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Cryogenic fuel, specifically liquid hydrogen, is crucial 
to upcoming lunar missions and Mars exploration. 
LH2 is favorable for efficient propulsion due to high 
energy density and can be produced in-situ. 

A standard boiling temperature of 20.3 K limits 
material selection and introduces unique challenges 
to LH2 fluid management systems.

Autonomous cryogenic transfer couplers for use in 
terrestrial, lunar, cis-lunar environments enable 
Artemis mission directives and pave the way for long 
term human travel.

Current couplers are heavy, expensive, and 
unreliable. Excessive amounts of fluid leak and 
cryogen boiloff inhibit transfer and introduce safety 
concerns.

LH2 BACKGROUND
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PRIMARY CONSIDERATIONS
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Weight
< 10 lbs

Production Cost
< $25,000

Automation & Integration

Heat Ingress & Ice 
Formation

< 9 W 

Fluid Leakage
< 0.15 sccm



Cryogenic Sealing

• Multi-layer PTFE seals remain flexible at 20 K

• Previous testing in PRVs supports FOD resistance and 
decreased leakage than COTS valves

NOVEL TECHNOLOGIES
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Additive Manufacturing
• Al6061-RAM2 alloy manufactured via LPDED
• Complex geometries at lower costs
• Thermal conductivity like SS316 at 20 K
• 1/3 density of SS316 for weight and component 

cool-down savings

Previously demonstrated seal

LPDED process
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PREDECESSORS
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Traditional Bayonet Coupling
• Longer-term connection
• Requires purging of entire line
• Low heat ingress of 8.8 W at 10 in x 12 in 
• O-ring at ambient conditions
• Vacuum jacketing

Female Vacuum Side Male Vacuum Side

V-Band Clamp/Bolts

O-ring

NASA CryoMag
• Magnetic alignment with Low Force 

Disconnect Coupler
• Spring energized O-rings
• No insulation



FINAL DESIGN
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OPERATION
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Sequential Coupler 
Actuation
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Sequential Coupler 
Actuation
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12

Sequential Coupler 
Actuation
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Sequential Coupler 
Actuation
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Sequential Coupler 
Actuation
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Sequential Coupler 
Actuation



OPERATION
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Sequential Coupler 
Actuation



AUTOMATION & INTEGRATION
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Motions required for full actuation
• Linear extension/retraction to connect
• Rotation of Nozzle to open and close flow

Integration 
• Can be built isolated from existing systems with 

a dedicated linear and rotary actuator 
• May be integrated with existing docking 

systems for alignment and connection, negating 
the need of a dedicated linear actuator and 
support structure

• Coupler can open and close while docked
 

6DoF Test of the NDS
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Icing Prevention

• Thermal standoffs and vacuum jacketing incorporated

• Shortest paths of heat transfer (shown below) were considered to determine 
dimensions of poppet and poppet seat

HEAT TRANSFER ANALYSIS
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𝑄𝑐𝑜𝑛𝑣 = ℎ𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒Δ𝑇

𝑄𝑐𝑜𝑛𝑑 =
𝑘𝐴𝑎𝑣𝑔Δ𝑇

𝐿

𝑄𝑐𝑜𝑛𝑣 = 𝑄𝑐𝑜𝑛𝑑



HEAT TRANSFER ANALYSIS
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Argon Jacket

Al6061-RAM2

Ambient 

temperature 

(300 K)

Cryogen boiling 

temperature (20 K)

2 mm 1 mm

Vacuum jacketing

• Voids in housing filled with argon during printing process

• Argon solidifies at 83.81 K, yielding a pressure lower than 10−5Pa at 20 K

• Vacuum effective thermal conductivity of 10 mW/m-K 

• Thermal resistance network (shown below) analyzed to determine heat leak of 
approximately 7.8 W per uncoupled



Opening Distance

• Area for flow through valve must never be less 
than the inlet area to minimize flow restriction

• The smallest area for flow is at the nose of the 
poppet

• With valve geometry determined via heat 
transfer calculations, opening distance can be 
found

• Informs the decision of positioning with 
magnet opening system

DESIGN CONSTRAINTS
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∆𝑥 =
𝑅𝑠 cos 𝜃 + 1 − 1

cos 𝜃 sin(𝜃) 𝑅𝑠

∆𝑥

𝜃

Most restricted flow 
area, 𝐴𝑟

𝐴𝑖 = 𝐴𝑟 = 𝑔(𝑅𝑠, 𝜃, ∆𝑥)



MAGNET ACTUATION SYSTEM
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Nozzle

Nozzle 
Poppet

Receiver 
Poppet

Nozzle

Receiver



Samarium Cobalt Magnets 
• Resist hydrogen embrittlement

• Perform better than Neodymium at cryogenic temperatures
• Arrays allow for rapid prototyping and cost savings

Magnetic Force Modeling
• Axial force between each magnet is calculated both as the Nozzle is 

rotated and as the Nozzle poppet travels
o Initially the two poppet arrays repel
o Once rotated approx. 90 degrees the poppet arrays align to 

attract, pulling open the nozzle poppet

3D Printed Magnets
• A larger opening window
• Greater opening forces
• Greater sealing forces 

 

MAGNET ACTUATION SYSTEM
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𝑆1 ∗ 𝑆2

𝐷2 = 𝐹

Nozzle

Nozzle 
Poppet

Receiver 
Poppet



Leidenfrost Dusting Effect

• Film boiling 

• Previously demonstrated to remove >90% 
dust simulant from spacesuit material in 
vacuum environment 

• Purge functionality removes dust just before 
coupling

Removeable Dust Cap

• Physical barrier to dust contamination

• Cold end contact prevention

DUST MITIGATION
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Lunar regolith is abrasive, electrically charged, and ubiquitous. 

HYPER Leidenfrost Dusting Demonstration
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TRL ADVANCEMENT

26

Basic Principles (Prior to project)TRL 1
• Teflon seals used in cryogenic applications

• Al6061-RAM2 cryogenic properties observed

Technology Concept Development (Jan 25-Mar 25)TRL 2
• Paradigm iterations and design review

• Final coupler design

Function Proof of Concept (Mar 25-May 25)TRL 3
• Polymer prototype printed to verify viability of design

• Demonstrate size, shape, design, and basic functionality

LN2 Testing (May 25-Aug 25)TRL 4
• Sealing capabilities, heat ingress, pressure drop, surface icing all to be tested

LH2 Testing (Aug 25-Dec 25)TRL 5
• Repeat LN2 testing but with LH2 flow to verify viability with hydrogen

Flight Readiness Testing (2026-2028)TRL 6-9
• Testing of entire system in relevant environment, including flight readiness testing

• TRL 9 achieved once system is “flight proven”
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CLOSING 
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The CYPRESS coupler synthesizes novel cryogenic sealing and additive 
manufacturing technologies to enable LH2 transfers in extreme environments.

CYPRESS can be integrated into pre-existing space craft mating systems for 
automated cis-lunar fuel transfers without the added complexity of an EVA. 

Ongoing validation testing will advance the technology through TRL 4 with plans 
to advance through TRL 5 in conjunction with the HYPER center. 



THANK YOU!

CrYogenic Performance REfueling Safety System
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Previously Demonstrated PRV Seals [5]

APPENDIX
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Conformable Plug 

Leakage Rate per Cycle
COTS Valve Leakage 

Rate per Cycle



AL6061-RAM2 [6]
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Samarium-Cobalt Magnets [22]
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Cam Surface Wear Estimate

Assumptions

• Opening/closing velocity of 10 ft/min

• 1 min cycle time

• 10,000 cycles

• Material properties equivalent to 66 Nylon + 15% PTFE

0.002 𝑖𝑛3 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑤𝑜𝑟𝑛 𝑎𝑤𝑎𝑦
0.002 𝑖𝑛 𝑦 − 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑔𝑒



Pressure Vessel Safety Validation

• Wall stress resulting from fluid pressure and vacuum insulation

• Thin-walled pressure vessel where wall thickness t and inner radius r 

 𝑡 < 10𝑟

• Hoop stress 𝜎ℎ estimated using the differential pressure across the wall P

𝜎ℎ = 𝑃 ∗
𝑟

𝑡

• ASME BPVC VIII-1 calls for 3.5 FOS for hoop stresses

• Coupler wall at 1 mm thickness exceeds requirements with FOS of 90

APPENDIX

34



APPENDIX

35

Budget
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