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*Not to scale

Cryogenic fuel, specifically liquid hydrogen, is crucial
to upcoming lunar missions and Mars exploration.
LH2 is favorable for efficient propulsion due to high
energy density and can be produced in-situ.

A standard boiling temperature of 20.3 K limits
material selection and introduces unique challenges
to LH2 fluid management systems.

Autonomous cryogenic transfer couplers for use in
terrestrial, lunar, cis-lunar environments enable
Artemis mission directives and pave the way for long
term human travel.

Current couplers are heavy, expensive, and
unreliable. Excessive amounts of fluid leak and
cryogen boiloff inhibit transfer and introduce safety
concerns.

Image Credits: NASA



Production Cost

Automation & Integration < $25,000

Heat Ingress & Ice
Formation
<9W

Fluid Leakage
< 0.15 sccm
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Cryogenic Sealing
« Multi-layer PTFE seals remain flexible at 20 K

« Previous testing in PRVs supports FOD resistance and
decreased leakage than COTS valves

Previously demonstrated seal

Additive Manufacturing

« Al6061-RAM2 alloy manufactured via LPDED
- Complex geometries at lower costs

- Thermal conductivity like SS316 at 20 K

« 1/3 density of SS316 for weight and component
cool-down savings

LPDED process
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Traditional Bayonet Coupling
« Longer-term connection
- Requires purging of entire line
« Low heat ingress of 8.8 W at 10inx 12 in
O-ring™”" -« 0O-ring at ambient conditions
« Vacuum jacketing

e V-Band Clamp/Bolts ~

Male Vacuum Side

Female Vacuum Side

NASA CryoMag
- Magnetic alignment with Low Force
e s e el Disconnect Coupler

« Spring energized O-rings
* No insulation
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Motions required for full actuation

Linear extension/retraction to connect
Rotation of Nozzle to open and close flow

Integration

Can be built isolated from existing systems with
a dedicated linear and rotary actuator

May be integrated with existing docking
systems for alignment and connection, negating
the need of a dedicated linear actuator and
support structure

Coupler can open and close while docked

6DoF Test of the NDS
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Icing Prevention
- Thermal standoffs and vacuum jacketing incorporated

 Shortest paths of heat transfer (shown below) were considered to determine
dimensions of poppet and poppet seat

Heat transfer
through the Heat transfer
_ Ambient _ poppet body through the
Qconv - hAsur f aceAT temperature ! valve seat
cond L
Vacuum
Qconv = Qcond Cryogen jacketing

boiling ——
temperature
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Vacuum jacketing
« Voids in housing filled with argon during printing process
- Argon solidifies at 83.81 K, yielding a pressure lower than 10~°Pa at 20 K
 Vacuum effective thermal conductivity of 10 mW/m-K

- Thermal resistance network (shown below) analyzed to determine heat leak of
approximately 7.8 W per uncoupled

1 mm

2 mm

Ambient
temperature «—

(300 K)

Cryogen boiling
temperature (20 K)
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Opening Distance Most restricted flow

* Area for flow through valve must never be less  areg 4.
than the inlet area to minimize flow restriction

 The smallest area for flow is at the nose of the
poppet

 With valve geometry determined via heat
transfer calculations, opening distance can be

found
R, (\/COS(Q) +1-— 1)
cos(@) sin(6)

Ax =

 Informs the decision of positioning with
magnet opening system
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Samarium Cobalt Magnets
 Resist hydrogen embrittlement
« Perform better than Neodymium at cryogenic temperatures S1 %S,
 Arrays allow for rapid prototyping and cost savings D2

Magnetic Force Modeling
 Axial force between each magnet is calculated both as the Nozzle is
rotated and as the Nozzle poppet travels
o Initially the two poppet arrays repel
o Once rotated approx. 90 degrees the poppet arrays align to
attract, pulling open the nozzle poppet (

Nozzle

Nozzle
Poppet

Receiver
Poppet

PO

3D Printed Magnets
A larger opening window
- Greater opening forces
 Greater sealing forces




Lunar regolith is abrasive, electrically charged, and ubiquitous.

Leidenfrost Dusting Effect
* Film boiling

* Previously demonstrated to remove >90%
dust simulant from spacesuit material in
vacuum environment

 Purge functionality removes dust just before
coupling

HYPER Leidenfrost Dusting Demonstration
Removeable Dust Cap

* Physical barrier to dust contamination
 Cold end contact prevention
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TRL 1 Basic Principles (Prior to project)

« Teflon seals used in cryogenic applications
» AlI6061-RAM2 cryogenic properties observed

TRL 2 Technology Concept Development (Jan 25-Mar 25)

e Paradigm iterations and design review
e Final coupler design

TRL 3 Function Proof of Concept (Mar 25-May 25)

 Polymer prototype printed to verify viability of design
* Demonstrate size, shape, design, and basic functionality

TRL 4 LN2 Testing (May 25-Aug 25)

* Sealing capabilities, heat ingress, pressure drop, surface icing all to be tested

TRL 5 LH2 Testing (Aug 25-Dec 25)

» Repeat LN2 testing but with LH2 flow to verify viability with hydrogen

TRL 6-9 Flight Readiness Testing (2026-2028)

e Testing of entire system in relevant environment, including flight readiness testing
e TRL 9 achieved once system is “flight proven”
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The CYPRESS coupler synthesizes novel cryogenic sealing and additive
manufacturing technologies to enable LH2 transfers in extreme environments.

CYPRESS can be integrated into pre-existing space craft mating systems for
automated cis-lunar fuel transfers without the added complexity of an EVA.

Ongoing validation testing will advance the technology through TRL 4 with plans
to advance through TRL 5 in conjunction with the HYPER center.
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Previously Demonstrated PRV Seals [5]
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AL6061-RAM2 [6] Samarium-Cobalt Magnets [22]

Thermal Conductivity Across Temperature
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Cam Surface Wear Estimate

Assumptions

« Opening/closing velocity of 10 ft/min

* 1 min cycle time

10,000 cycles

- Material properties equivalent to 66 Nylon + 15% PTFE

Wear = Motion Factor = Environ Factor * Wear Factor * Pressure * Velocity * Time

Motion Factor: 1.3
Environmental Factor: 6
Material Wear Factor: 1.3+ 10°°

0.002 in3 material worn away
0.002 in y — displacement change
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Pressure Vessel Safety Validation
« Wall stress resulting from fluid pressure and vacuum insulation
 Thin-walled pressure vessel where wall thickness t and inner radius r

t < 10r

« Hoop stress og;, estimated using the differential pressure across the wall P

r

« ASME BPVC VIII-1 calls for 3.5 FOS for hoop stresses
« Coupler wall at 1 mm thickness exceeds requirements with FOS of 90
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Pl Name(s): Jacob Leachman PHASE 1 PHASE 2 TOTAL
B d t T | 04/08/25 06/02/25
u g e Agency Name: NASA 06/01/25 08/08/25
00 - SALARIES Pay Rate # Mos. % FTE Salart
Pl: Jacob Leachman 0.00 0.00 0.00% 31.30% - -
Pl: Emily Larsen 0.00 0.00 0.00% 31.30% - -
01 - WAGES $Per Hr. Hrs/Wks # Wks.
Student: $0.00 0 0 Wages - -
Benefits 2.9% - -
07 - BENEFITS

TotalSaIaries[Wages/Beneﬁtsl = | 2

02 - PURCHASED SERVICES (Personal Services Contracts and Consultants and Computer Services)

Total Personal Services Contractsl - | | £

03 - GOODS/SERVICES (Including Small/Attractive Items)

I Conference registration 2,600 2,600
Total Goods/Services 2,600 2,600

04 - TRAVEL
Travel to Competition 3,625 3,625
Total Travel 3,625 3,625

05 - COMPUTER SERVICES

Total Computer Services - -

06 - MATERIALS AND SUPPLIES

Mechanism Testing Supplies 300 - 300
Cryogenic Testing Supplies and Manufacturing - 15,000 15,000
Total Materials and Supplies 300 15,000 15,300

08 - SCHOLARSHIPS AND FELLOWSHIPS (SUBSIDIES/PARTICIPANT SUPPORT COSTS)
Remaining Scholarship funds 2,725 2,725
NASA Internship Stipend (3 interns) 32,800 32,800
Total Stipends/Subsidies/Participant Support Costs 2,725 32,800 35,525

14 - AWARD RESTRICTIONS (RESTRICTED: incl. SUBAWARDS/SUBCONTRACTS)

Total Subcontracts/Restricted - -

TOTAL DIRECT COSTS - -
EXCLUSIONS
Other (Off-Site Rental & Stipends, Etc) - -

Total Exclusions - -
MTDC BASE Base - -
13 - FACILITIES & ADMINISTRATIVE COSTS (F&A, IDCs, OVERHEAD) F&A Rate: I 0.000% - -
TOTAL COSTS 9,250 47,800 57,050
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