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Intro to Cryogenic Propellant Transfer
• Importance? Cryogenic liquids in the HLS 

mission architecture must be efficiently 
and safely transferred in microgravity

• Issues? Propellant boil-off during transfer 
reduces useable propellant and risks tank 
over-pressurization

• Impact? Proper boil-off mitigations 
techniques reduce propellant loss and 
improve transfer safety in support of long-
duration missions
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Cryogenic Background and Impacts

Overview
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Cryogenic Background and Impacts

Propellant Losses
• Directly impact long-

duration missions
• Jeopardize transfer 

timeline

Tank Over-Pressurization
• Critically endangers HLS 

architecture and crew
• Damages surrounding tank 

structure and instrumentation

Transfer Line Heat Leaks
• Compromise efficiency of one-

phase propellant transfer
• Result in unintended gas 

entering storage tank
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Objectives

Overview 5

Strategy

Direct research efforts towards:
• Line Chilldown
• Tank Chilldown
• 2-Phase Flow Imaging

Goal

Address gaps in existing research:
• Holistic cryogenic transfer protocol
• Propellant line flow monitoring
• HLS architecture health
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Value Proposition

Goal: Monitor and manage boil-off during transfer

The University of Illinois proposes ECLIPSE, which will:
• Mitigate propellant losses during line chilldown through transfer line coatings 

and pulsed propellant flow 
• Reduce tank over-pressurization risks through operational changes in the tank 

chilldown protocol
• Monitor heat leaks along the transfer line with a flow-monitoring sensor

Overview
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Concept of Operations
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Mission Timeline

Key Goals
• Develop mission concept 

and integration
• Verify concept with 

simulations

Mission Milestones
• MCR
• SRR
• MDR 
• PDR

Key Goals
• Develop and test each 

component of ECLIPSE
• Refine fabrication 

processes

Mission Milestones
• CDR
• ORR

Key Goals
• Run precursor mission
• Refine simulations 

based on precursor
• Launch first mission

Mission Milestones
• PLAR 
• FRR

2028 - 2029

Mission Operations

2025

Concept Studies

2026 – 2027

Project Development



Stage 1: Line Chilldown
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State of the Art

Propellant Pulses

Pipe alterations2Pulsing propellant during line chilldown1

Current research has focused on mass savings in the line chilldown process.

Line Chilldown

Thin Microfilm
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Pulse Flow Motivation

Flow boiling curve: film boiling insulates 
and reduces efficiency.

Pulse flow results in significant mass savings. 

Pulsed Flow

• Pulsed flow destabilizes its 
vapor film

• Less consumed propellant 
mass during line chilldown
(compared to cont. flow)
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Pulse Flow Simulation

• Simulation developed based 
on existing literature

• Heat correlations obtained 
from Dr. LeClair.

• Parameters
• 0.46in inner diameter
• 0.02in pipe thickness
• 22.5in pipe length
• Fluid is LN2

GFSSP used to simulate pulsed flow.

GFSSP Pulse Flow Model

Pipe Inner Surface

Fluid Node

Heat 
Transfer 

Node

Pulsed Flow



• Chilldown times
• Continuous flow: ~12 

seconds
• Pulse flow:  ~ 20 seconds

• LN2 Propellant Mass Used
• Pulsed flow saves up to 

24% of propellant
• Decreasing propellant mass 

utilized with higher valve close 
times

13

Pulse Flow Simulation Results

Despite longer chilldown times, pulse flow results in significant mass savings.

Propellant Mass Used to Achieve Chilldown for Different 
Valve Closed Times

Pulsed Flow

Seconds Valve is Shut Off For (s)
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Hydraulic Shock

Water Hammer Progression8

Pulsed flow may induce the hydraulic shock effect, which can be reduced through optimal valve closing time.

• Hydraulic shock effect: Pressure spike 
that occurs due to rapid change in fluid 
momentum

• Lack of research within this field

• Mitigation methods
• Increase pipe diameter
• Decrease flow rate
• Pressure spike damper
• Increase valve closing times

• This may reduce effectiveness of pulse 
flow

Pulsed Flow
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Hydraulic Shock Simulation

GFSSP Hydraulic Shock model

A safe valve closing time can be found to match an acceptable pressure spike.

• Model created using GFSSP
• Parameters

• 127 psi – 87 psi
• Total length : 60'
• Pipe ID: 10"
• Simulation tested for various 

open/close times

Pulsed Flow
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Hydraulic Shock Simulation

Maximum pressure in system as function of valve 
open and close time

Close time much more impactful than open time, hydraulic shock is a fixable issue

• ASME B31.4: max total pressure should 
not exceed 110% of design pressure

• Valve limitations
• Stronger motors/pneumatics may 

add mass/complexity
• Proposed open-close times

• Open: as fast as possible
• Close: two seconds or longer

Pulsed Flow
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Tube Modifications and Coatings

Modifying the tube's inner surface is an effective way to reduce propellant loss.

• Benefits
• Reduce boiloff during line chill-down
• Increase heat transfer coefficient
• Decrease chilldown time
• Increase sensible latent heat 

• Trade study conducted, microfilm chosen

Tube Coating
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Tube Modifications and Coatings

Low-conductivity microfilm coating enhances heat transfer, reducing the mass of propellant loss.

• Low-conductivity coating insulates 
tube surface from bulk tube mass
o Enables faster film boiling 

• Optimal thickness balances initial 
cooling with ongoing heat 
conduction

Chill-down curve with varying coating layers16

Tube Coating
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Tube Modifications and Coatings

The ideal microfilm coating is FEP applied to the tube using spray coating method.

The ideal microfilm coating is FEP applied to the tube using spray coating method.

Coating Material Options

• FEP: lower thermal expansion, 
more formable, used in more tests

• PTFE: wider temperature range, 
higher mechanical strength

Tube Coating

Application Technique

• Pour and drain: used in experiments, 
can be inconsistent

• Spray coating: requires dedicated 
equipment, used in long tubes

Chosen: FEP with spray coating
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Tube Modifications and Coatings

GFSSP can be used to simulate microfilm coatings effects on chill-down.

Microfilm Coatings Chilldown model

• Model created using GFSSP, based 
on existing literature

• Continuous flow utilized
• Modelled with Miropowlski heat 

correlations
• Parameters

• 0.46in inner diameter
• 0.02in pipe thickness
• 22.5in pipe length
• Fluid of LN2

Tube Coating

Pipe Wall

Microfilm 
Coating

Fluid
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Tube Modifications and Coatings

Microfilm model results in faster line chilldown.

• Microfilm model has 
faster chilldown due 
to higher heat transfer 
coefficient

• Allows for line to enter 
nucleate boiling regime 
faster

Upstream node temperature coated vs uncoated over time

Tube Coating
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Key Innovations

Line Chilldown

Pulse flow reduces 
propellant mass used

Microfilm coatings 
improve chilldown

time

Solutions can be 
modelled through 

GFSSP



Stage 2: Tank Chilldown
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Motivation

Tank Chilldown

Tank chilldown brings a risk of over-pressurization.

• Key risks caused by microgravity 
environment 
• Tank over-pressurization
• Accidental venting of ullage

• Priorities when performing tank chilldown
• Lower propellant utilization
• Maximize tank fill percentage

• Solution: Charge-Hold-Vent (CHV) and 
No-Vent-Fill (NVF)

Cryogenic tank chill fill is easier in gravity 



Steps:
1) Open and close valve to send a pulse of 

fluid
2) Allow fluid to completely boil while valve 

is closed, then vent gas
3) Repeat until tank is conditioned, then fill 

the tank without venting.
Benefits: 
• Each charge is used efficiently 
• No propellant is accidentally vented
• Tank over-pressurization risk is mitigated

26

Charge Hold Vent & No Vent Fill

Charge Hold Vent (CHV) and No Vent Fill (NVF) mitigate over-pressurization while chilling down tank.

Cooling receiving tank with periodic propellant 
charges3

Propellant Charges

Tank Chilldown



• Tank wall temperature is most 
consistent trigger to switch from 
CHV to NVF

• Place thermocouples at areas of 
highest thermal mass
• Near structural interfaces 

like stainless-steel flanges

27

Tank Chilldown Transition

Transition point determined by areas with highest thermal mass.

Highest thermal mass tank locations see largest 
temperature increase in between charges. 

Temperature increase 
between charges

Tank Chilldown



• Script developed to solve for system
• Stainless steel tank
• 1200 m3 volume
• 200 mT fluid transferred

• Final temperature = saturation 
temperature

• Output
• Maximum Initial Temp for LOX = 

105.35 K
• Maximum Initial Temp for LHC4 

= 129.61 K

28

Transition Point Calculation

An optimal tank temperature can be found to transition between CHV and NVF.

𝑚𝑓𝑙𝑢𝑖𝑑,𝑓𝑖𝑛𝑎𝑙 𝑢𝑓𝑙𝑢𝑖𝑑,𝑓𝑖𝑛𝑎𝑙 − ൫

൯

𝑚𝑙𝑖𝑞𝑢𝑖𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑢𝑙𝑖𝑞𝑢𝑖𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +

𝑚𝑣𝑎𝑝𝑜𝑟,𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑢𝑣𝑎𝑝𝑜𝑟,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − (𝑚𝑓𝑙𝑢𝑖𝑑,𝑓𝑖𝑛𝑎𝑙 −

𝑚𝑓𝑙𝑢𝑖𝑑,𝑖𝑛𝑖𝑡𝑖𝑎𝑙)ℎ𝑖𝑛𝑙𝑒𝑡 = ሶ𝑄𝑝𝑎𝑟𝑎,𝑎𝑣𝑔∆𝑡 −𝑚𝑡𝑎𝑛𝑘 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙׬
𝑇𝑓𝑖𝑛𝑎𝑙 𝑐𝑡𝑎𝑛𝑘𝑑𝑇

Tank Chilldown

Energy balance equation21

• Final fluid heat
• Initial fluid heat
• Heat gained from the 

inlet
• Loss to the environment
• Loss of the tank metal

• m = mass
• u = internal energy
• h = specific enthalpy
• Q = parasitic heat leak
• t = time
• T = temperature
• C = specific heat
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Key Innovations

Tank Chilldown

Charge-Hold-Vent 
and No-Vent-Fill 

utilized

Hottest tank locations 
determine transition 

point

Optimal transition 
temperature can 

be determined



Phase 3: Propellant Transfer
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Flow Imaging Motivation

Propellant Transfer

Flow patterns for 2-phase flow in horizontal pipes

• Monitoring micro-g 2-phase flow regimes 
during transfer gauges transfer health

• Can point out:
• System heat leaks
• Propellant losses
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State of the Art

Fiber Optic Multi-Phase Sensor

Current research is limited by unreliable measurements or system-level integration incompatibility.

Propellant Transfer

Electrical Resistivity Probe Sensor Radio Frequency Void Fraction Sensor



33

Sensor Design Overview

Propellant Transfer

Operation: Measures time-domain 
capacitance signal

Comprised of:
• Asymmetric Copper electrodes
• X-Aerogel insulation
• Aluminum sensor shield

Location: End of transfer Line
Capacitance 2-phase visualization
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Why Capacitance Sensing?

Propellant Transfer

• 2-phase flow sensing with a capacitance sensor is:
• Gravity independent
• Minimally invasive

• Measured time-domain capacitance signal is informative about flow behavior
• Capacitance mean → void fraction
• Statistical moments from signal → flow topology

=  Capacitance of the liquid

=  Capacitance of the gas

=  Measured capacitanceVoid fraction relationship with capacitance
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Sensor Requirements

Propellant Transfer

Requirement Value

Sampling Frequency ≥ 200 Hz

Excitation Frequency 10 Hz (Can burst to 1 kHz)

System Power ~ 10 W

Potential Difference 25 V



• Calibration is done with Finite Element 
Method (FEM) simulations
• Curve fit with void fraction vs 

capacitance trend

• Curve is verified using data from 
suborbital flights

36

Sensor Calibration

Propellant Transfer

FEM analysis and proposed calibration process
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Flow Regime Identification

Propellant Transfer

Motivation: Monitoring two-phase flow regimes can identify
• System Heat Leaks
• Propellant Losses

Challenge: Past work coupled statistical features + Fourier Analysis for identification
• Fourier analysis requires large datasets for coherent results

• Short micro-g test flights limit datasets

Goal: Develop flow regime identification technique using time-domain statistical 
features of measured capacitance signal



• Flow regimes identified with 
• Mean (1st moment)
• Variance (2nd moment)
• Kurtosis (4th moment)

• Probabilistic clustering used to group 
points

• High probability of accurate flow 
regime detection
• Smooth regime transitions

38

Flow Regime Map

ECLIPSE Initial Flow Regime Map

Propellant Transfer
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Suborbital Concerns

Propellant Transfer

• Two major concerns with micro-g 
experimental data

1.) Duration of data
2.) Imbalance of points per flow 
regime

• Extending data will overemphasize 
one flow regime due to regime 
transitions

• Solving (2) is much more feasible
• Curve interpolation is done

Measured Capacitance v Time from ANSYS

Annular
Slug



Curve interpolation done with Gaussian Process Regression (GPR)
• Machine Learning probabilistic interpolation model

• Smooths out noise
• Low probability of over-fitting

40

Curve interpolation

Before interpolation 

GPR

After interpolation 

Propellant Transfer
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Final Flow Regime Map

GPR

Propellant Transfer
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Key Innovations

Propellant Transfer

Capacitance sensor 
monitors propellant 

transfer health

Statistical moments 
are used to determine 

flow regime 

Propellant losses 
and heat leaks can 

be identified



Risk Informed Decision Making
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Risk Analysis and Mitigation

Mission Assessment

ID Risk Mitigation Impact

1 Unvalidated microgravity 
fluid dynamics models

Conduct precursor flight experiments to calibrate micro-g 
models; integrate updates prior to final launch

Adjustments to current models 
and heat correlations

2 Valve depreciation from 
pulsed flow

Perform valve lifecycle testing under simulated pulsed flow 
conditions before system integration

Ensures robust chilldown 
protocol

3 Lack of funding Conduct sensor feasibility and prototyping during ground test 
phase to reduce early-stage funding burden

Reduces development risk 

and keeps project on 
schedule
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Test Campaign

Propellant Transfer

Ground & Prototype Testing Suborbital & Parabolic Test 
Flights
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Cost Analysis

Mission Assessment

• Two estimates were created used NASA 
Instrument Cost Model
• Uses mass and power-driven cost 

estimation relationships (CERs) 
based on heritage instrument 
development

• Lower bound: $21.4 million
• Higher bound: $28.6 million
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Key Innovations

Mission Assessment

Proposed pulsed flow optimized with respect 
to heat efficiency and hydraulic shock

Developed a micro-film GFSSP modeling 
technique

Created a novel 2-phase flow 
regime measurement technique
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Capacitance Sensor

Propellant Transfer

• S = electrodes surface area
• d = distance between the 

electrodes
• k = dimensionless number 

that depends on distance 
between electrodes
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Sensor Components

Propellant Transfer

Signal through vacuum:
• Hermetic Feedthroughs

o Preserves vacuum integrity
o Highly tested
o Industry standard

Insulator Material:
• Aerogel Insulator (X-aerogel)

o Ultra-lightweight
o Effective thermal & electrical 

insulators 
o Previously implemented in space



50

Sensor Geometry

Propellant Transfer

Asymmetrical capacitance sensor leads to higher accuracy

• Asymmetrical
• Reduced electric field curvature compared to other geometries
• Higher accuracy because of stronger correlation between EFA and experimental 

capacitance-void fraction measurements
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Sensor Geometry Models

Propellant Transfer

CAD models comparing each sensor type
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"Thermal Effect" Correction

Propellant Transfer

Accounting for thermal component shrinkage with new equations

Fig. 9. Test #1 and Test #3C void fraction time histories before (a) and after (b) the “thermal effect” 
correction. 
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FEM Simulations

Propellant Transfer
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Insulator Materials Trade Matrix

Propellant Transfer

Unweighted

Weighted
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Shield Materials Trade Matrix

Propellant Transfer

Unweighted Weighted
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ANSYS Simulation Framework

Propellant Transfer

Mesh Configuration
• 227,561 nodes / 971,603 (near student license limit)
• Swept mesh with free-seed face (quadrilateral/triangular elements extruded axially)
• No inflation layers but adaptable for future wall resolution improvements.

Solver & Model Settings
• Transient pressure-based solver (Eulerian multiphase model)
• Phases: Oxygen gas (primary) / liquid oxygen (secondary)
• Lee model for phase change (evaporation/condensation)
• SST k-omega turbulence model with mixture properties.

Material Properties
• Liquid/gaseous oxygen properties sourced from ANSYS database.
• Future preference: Model oxygen gas as incompressible ideal gas for operational realism.
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ANSYS Simulation Framework

Propellant Transfer

Boundary Conditions
• No-slip walls / Velocity inlet (liquid oxygen: 1 m/s, 300 K)
• Liquid oxygen inlet volume fraction: 1 (pure liquid entry)
• Aluminum pipe walls with 0 W/m² heat flux (adiabatic).

Solution Controls & Outputs
• Time step: 0.01 s / Total steps: 990 (adjustable for transient resolution)
• Outputs: Phase volume fraction data, fluid domain axis animations.

Key Note
• Framework designed for future upgrades (pressure inlet, heat transfer analysis)
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Flow Regime Map Slices

Propellant Transfer
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Flow Regime Wrap-up

Propellant Transfer

• Three statistical parameters (mean, 
variance, and kurtosis) distinguish 
different flow regimes

• Interpolate data using Gaussian Process 
Regression for even distribution of points 
per flow regime

Enables: Real time flow regime identification 
by matching measured parameters using 
map
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GFSSP Model Comparison

Mean Re ~68000 and Mean Re 41000
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Zero-G Simulation Continuous
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Zero-G Simulation Pulse
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Continuous Flow Upstream
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Pulse Flow Upstream
WinPlot 4.x

Edit w/menu Style->Nomenclature->Set Title
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Microfilm Upstream
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Continuous Flow Upstream
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Pulse Flow Upstream
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Microfilm Upstream
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Continuous Flow Upstream
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Pulse Flow Upstream
WinPlot 4.x

Edit w/menu Style->Nomenclature->Set Title
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Microfilm Upstream
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Continuous Flow Upstream
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Pulse Flow Upstream
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Continuous Flow Upstream
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Pulse Flow Upstream
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Continuous Flow Upstream
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Pulse Flow Upstream
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Continuous Flow Upstream
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Pulse Flow Upstream

C
p

S
1
0
7
 B

T
U

/L
B

-R

0 4 8 12 16 20

0.112

0.108

0.104

0.100

0.096

0.092

0.088

0.084

Time  Seconds  Relative Time in Seconds  

WinPlot v 4.7

10:50:32PM 06/18/2025

LCD_pulse_1_2.dll.WPL CpS107 BTU/LB-R Specific Heat of Solid Node



80

Microfilm Upstream
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Pulse Flow Upstream
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Pulse Flow Upstream
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Microfilm Upstream
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Continuous Flow Upstream
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Microfilm Upstream
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