CRyogenic <u>O</u>rbital <u>S</u>iphoning <u>S</u>ystem

Presented by The College of New Jersey

NASA Human Lander Challenge 2024–25

Meet the Team

Dr. Mohammed Alabsi: Project Advisor Mohamed Eladawy: Project Manager / Applied Thermodynamics

Vaishnavi Adusumilli: Team Manager / Mechanical Design

Pierce Rubenstein: Treasurer / Control Systems 2

NASA TCNJ HULC 2024-25

Kyle Luis: Webmaster / Fluid Modeling & Design

Project Deliverables and Constraints

Solution Requirements

- A design of a cryogenic fluid transfer process
- Have minimal mechanical components
- Have thermal insulation from radiative sources
- Provide boil-off mitigation/management

Environmental Constraints

- Zero gravity conditions
- Surface tension dominated environment
- Launch survivability
- Longevity of 10 months in outer space

FIGURE 1: Distributed Launch Transfer Concept¹

Primary Challenges

Surface Tension Dominated Environment

Current Propellant Management Devices (PMDs)

- Bladders and Diaphragms: tank size and material limitation
- Vanes: limited to small demand flow
- Sponges : high system mass and small volume application
- Pistons: leakage at piston rings and low EE
- Screen LAD: low reliability and high manufacture cost

Current Issues

- Adhesion To Unwanted Surfaces
- Low Expulsion Efficiency (EE)
- Bond Number Effects (Bo)

NASA TCNJ HULC 2024-25

FIGURE 2: Bladder PMD Schematic² FIGURE 3: Vane PMD Schematic²

FIGURE 4: Example of Sponge PMD² FIGURE 5: Screen LAD Schematic²

?Hartwig, J. W. (2016). A detailed historical review of propellant management ... https://ntrs.nasa.gov/ https://ntrs.nasa.gov/api/citations/20170000667/downloads/20170000667.pdf

Primary Challenges

Long Term Storage in Microgravity Conditions

Current Boil-off Management

- Autogenous pressurization
- Helium pressurization

Current Issues

- Vapor pressure risk due to boil-off
- Low expulsion efficiency
- Short storage term
- Propellant contamination
- Helium as a limited resource

FIGURE 6: Example of Propellant Boil-Off In A Closed System³

³R. Morales-Ospino, A. Celzard, V. Fierro. Strategies to recover and minimize boil-off losses during liquid hydrogen storage. Renewable and Sustainable Energy Reviews, 2023, 182, pp.113360. ff10.1016/jrser.2023.113360ff. ffhal-04146246f

CROSS Design: System Overview

CROSS Design: CVAPS Process

CROSS Design: Flow and Phase Control

Phase Separation:

- Siphoning Loop to Isolate Phases
- Centrifugal Cyclonic Separator

Flow Stabilization Features:

- Hydrophobic Membranes in Lines
- Single Phase Pump

Automation and Feedback

- Pressure Sensing in Main Storage Units
- Automated Valve Control for System Response
- Maintains Boil-off During Storage
- Reduces Manual Intervention and Error

Figure 9: Gas Bubble Passing By a Membrane⁴

Figure 10: Schematic Of A Cyclonic Separator⁴

⁴Balasubramaniam, R., Ramé, E., & Motil, B. J. (2019). Microgravity liquid-gas two-phase flow: Review of pressure drop and heat transfer correlations and guidelines for equipment operability (NASA/TM-2019-220147). National Aeronautics and Space Administration. https://ntrs.nasa.gov/api/citations/20190001795/downloads/20190001795.pdf

Concept of Operations

Stage 1: Storage

- CROSS pre-pressurized before installation to payload vehicle
- Valve minimally opened for limited flow of propellant to CVAPS
- CROSS stays pressurized over time

Stage 2: Coupling

- Signals from the destination vessel are sent to the instrument system
- Automated couplers activate between destination vessel and CROSS

<u>Stage 3: Transfer</u> <u>Begins</u>

- Valve opens further to allow increased flow to CVAPS
- Increased rate of vaporization heightens gas pressure
- Piston begins to move in the direction of the exit point

Stage 4: Transfer Ends

- Pressure equalizes at the end of piston stroke
- Cross is now filled with gas
- Destination vessel supply is now fully replenished
- CROSS disengages from destination vessel

PULSE: Overview

Objective

- Total gaseous mass needed for transfer and storage
- Time required for complete transfer
- Data collection of both phases for more accurate analyses
- Validate the piston based storage for cryogenic fluids

Methodology

Gaseous mass flow based on pressure differential

- Knowns: density and volume of gas
- Unknown: mass of gas required for complete transfer
- Maintain cryogenic conditions through vacuum

FIGURE 12: Theoretical Concept Transfer Process

PULSE: Apparatus Schematic Diagram

FIGURE 13: PULSE Apparatus Diagram

Piston: Manufacturing: Piston

Thermal Expansion Analysis (6061-T651 AI):

- Nominal⁵: 14 μin/in-°F
- Measured: 22.67µin/in-°F

Prototypes:

- 3D printed PLA, 6.5" diameter
- 3D printed ABS Plastic, 6.5" diameter
- Machined Acrylic, 6.43" diameter

<u>Ring Iterations:</u>

- Bronze Core and PTFE Wear Ring Stock
- Rubber Core and FEP Plastic
- Solid PTFE Plastic rings (6.25" 6.5")

Final Dimensions:

6.355" overall diameter with 6 solid PTFE rings

FIGURE 14: Various Piston Prototypes

FIGURE 16: Final Piston Iteration

12

FIGURE 15: Theoretical Concept of Transfer Process

NASA TCNJ HULC 2024-25

⁵MatWeb. (2025). Aluminum 6061-T6; 6061-T651 – Material datasheet. MatWeb. Retrieved June 20, 2025, from https://www.matweb.com/search/DataSheet.aspx?MatGUID=b8d536e0b9b54bd7b69e4124d8f1d20a

Tanks: Manufacturing & Analysis

Tank A/B

- Material: Custom Hydraulic Cylinder
- Safety Factor: 2.46 (75 psi at -400 °F)
- Max Deflection: 0.0039 in. at face

<u>Tank C</u>

- Material: Modified Oxygen Tank
- **Safety Factor:** 7.1 (50 psi at -400 °F)
- Max Deflection: 0.0012 in. at face

FIGURE 17: Hydraulic Cylinder used for Tank A/B

FIGURE 18: Hydraulic cylinder ANSYS safety factor analysis

FIGURE 19: Oxygen Medical Tank used for Tank C

FIGURE 20: Oxygen Tank ANSYS safety factor analysis

Tank Heads: Manufacturing & Analysis

Materials and Components

- Custom 3/16" AISI 1026 Steel Gussets
- SS 304 Welded Bungs and Fasteners
- 3/8" Diameter SS Connecting Rods

FIGURE 21: Tank A Manufactured Head

NASA TCNJ HULC 2024-25

<u>Analysis Results</u>

- Maximum Deformation: 0.00047 inches
- Maximum Stress: 38,431 psi
- Safety Factor: 1.55

FIGURE 22: Deformation Analysis

Vacuum Chamber: Manufacturing

Materials:

- G-10 Garolite Boards
- Re-Machined Latches
- Silicone Rubber Gaskets and Bolt Washers
- ¼" Thick Acrylic Observation Panel
- Aluminum Based Mylar Sheets

Vacuum Chamber: Thermal Analysis

<u>Heat Leak Analysis</u>

1 Minute

- Maximum Temperature: 117.57 K
- Maximum Heat Leak Rate: 3 W at Exit
 4 Minute
- Maximum Temperature: 154.81 K
- Maximum Heat Leak Rate: 9.8 W at Exit

Vacuum Pressure Analysis

7 PSI

- Max Deformation: 0.24 in
- Safety Factor: 3.5 at 3228.5 PSI

14.7 PSI

- Max Deformation: 0.46 in
- Safety Factor: 1.7 at ~6500 PSI

Figure 29: Maximum Heat Leak at Corner Brackets

Figure 30: Heat Leak at 4 Minutes

Figures 31-32: Vacuum Chamber Deformation (left) and Maximum Stress (right)

PULSE: Operational Visualization

FIGURE 33: Pulse Testing Process

Controls System: Overview

<u>Sensors</u>

- Strain gauge rosettes to determine tank pressures
- RTDs for assistance with determining pressures
- All signals conditioned prior to data collection

Modulating Valve

- Closed-loop PID control scheme developed to maintain linear pressure increase in gas tank
- Experimental valve flow relationship utilized for accuracy

<u>Code</u>

- Web server configured for remote data viewing and valve control
- Dual-core controller to run micropython code exporting data to files for analysis

Figure 35: Modulating Valve Flow

Relationship Test Data

Click <u>here</u> to open the solenoid valve Click <u>here</u> to close the modulating valve

Click here to refresh the page

SUB-B SG1: 255 SUB-B SG2: 457 SUB-B SG3: 463 SUB-B Temp: 295

LND SG1: 594 LND SG2: 658 LND SG3: 255 LND SG4: 252 LND Temp: 340

Chamber Temp: 319

Modulating Valve Feedback Position: 239

Figure 36: Remote Server Testing 18

Fluid Modeling: Parameter Framework

Figure 38: Plotting Transfer Time against Flow Velocity

Flow Velocity Determination

- Demonstrates fluid velocity over time within the targeted operational range
- Confirms that ΔP directly influences transfer speed NASA TCNJ HULC 2024-25

Figure 39 Plotting Pressure Loss against Inlet Velocity

Pressure Loss Determination

- Pressure loss increases with fluid velocity
- Validates theoretical pressure loss relationships (Darcy-Weisbach Principal)

Fluid Modeling: Validation & Simulation

<u>Parameters</u>

- Volume of Fluid: Explicit time formulation
- Transient: 0.53 second elapsed time
- K-Omega model: Accurate for enclosed flows
- Iterative Simulation: 1-10 m/s
- Total Simulation Time: ~ 11 hours

Data Verification

Strain Gauge pressure readings

Figure 40: Total Pressure at Fully Developed Flow

Figure 41: Simulation of Air Volume to Liquid Volume

Validation and Simulation

Destination Behavior

- Turbulence experienced past 0.1 m/s
- Introduction of severe turbulent dissipation at speeds above 5 m/s
- Total Simulation Time: ~ 2 Days

<u>Limitations</u>

- Divergent solution methods
- Cluster incompatibility
- Failed UDF implementation on available licensed machines

Figure 42: Simulation Model of LN₂ Flowing at 6 m/s

Figure 43: Simulation Model of LN₂ Fill up at 1.5 m/s

PULSE: Risks and Mitigation Plan

Incomplete Piston Seal

- Results in significant propellant contamination and heat leaks from gas portion to storage chamber
- Mitigated in PULSE by using multiple sealing rings
- Mitigation for CROSS with structural webbing and tank outer casing

<u> Piston Misalignment</u>

- Results in piston travel stoppages and potential unsealing
- Mitigated through the addition of an extra "skirt" offset from the main piston to maintain alignment

Two-Phase Flow During Transfer

- Propellant contamination can result in destination vessel engine failure
- Mitigated using siphoning loop and cyclonic separators

FIGURE 44: Theoretical Concept Transfer Process

CROSS NASA Adoption Timeline – Phase B

PULSE-2

- Advanced CROSS prototype to test
 CVAPS components and optimal
 piston design
- Perform ground tests for slosh control, boil-off reduction, and piston sealing
- Perform microgravity fuel transfer tests on board the ISS
- Preliminary Design Review by mid-August 2026

	[2025			2026			
Task Name	Duration	7	9	11	1	3	5	7
Phase B	280			• • •				
CROSS Preliminary Testing	111							
CVAPS Prototype Construction	35							
PULSE-2 Construction	30							
Component Construction Margin	10							
Prototype Integration	15							
Component Integration Margin	5							
In-Facility Prototype Testing	35							
In-Facility Testing Margin	10							
CROSS Microgravity Testing	130							
Prototype ISS Transport Window	105							
Microgravity Prototype Testing	55							
Microgravity Testing Margin	20							
CROSS PDR Development	30							
PDR Development Margin	10							

Figure 45: CROSS NASA Adoption Timeline, Phase B

CROSS NASA Adoption Timeline – Phase C/D

Design Finalization

- CVAPS and storage tank optimization based on Phase B testing
- Critical Design Review by mid-January
 2027

Manufacturing and SIT

- CVAPS and storage tank to be built simultaneously
- Integration testing performed at JPL's
 25-Foot Space Simulator
- Ready for launch delivery June 1st 2028

								2028				
Task Name	Duration	9	11	1	3	5	7	9	11	1	3	5
Phase C/D	456	200 - 201 - 2 		1 - 1 - 20 -		9 - 90 - 4			es. 197 - 1		10-10-14 	
CROSS Final Design Development	71											
CVAPS Final Design Development	35											
Storage Tank Final Design Development	25											
Component Integration Design	20											
Design Margin	15											
CROSS CDR Development	30											
CDR Development Margin	10											
CVAPS Operations	196											
CVAPS Parts Acquisition	35											
CVAPS Build	50											
CVAPS Assembly	30											
CVAPS Testing	65											
CVAPS Margin	15											
Storage Tank Operations	156				1				0.11			
Storage Tank Parts Acquisition	20											
Storage Tank Build	35											
Storage Tank Assembly	25											
Storage Tank Testing	60											
Storage Tank Margin	15											
System Integration and Test Operations	146											
SIT Integration	55											
Integration Margin	15											
SIT Testing	55											
Testing Margin	15											
CROSS Ready for Launch Delivery	06/01/28	10								1		+

Mass Analysis

Component	Material/Basis	Mass					
Piston (Solid)	Composite (ρ = 1600 kg/m³)	21,300 kg (~47,000 lbs)					
Piston (Shell, 90% Reduction)	Composite (ρ = 1600 kg/m³)	2,130 kg (~4,700 lbs)					
Inner Tank	7-Series Al Alloy (ρ = 2800 kg/m³)	2,600 kg (~5,730 lbs)					
Outer Skeletal Support	Composite (ρ = 1600 kg/m³)	374 kg (~824 lbs)					
Electronics & Components	Electronics, Thermal lines, Compressors	250 kg (~550 lbs)					
Total MLI Insulation	Based on Space Shuttle TPS Scaling	800 kg (~1,760 lbs)					
Total Dry Mass (with 1.25 Multiplier for Seams, Fittings, Attachments)							
With Solid Piston (for one propella	31,500 kg (~71,000 lbs)						
With Shell Piston (for one propella	7,800 kg (~17,200 lbs)						

Cost Analysis		S N	tructures Iass (kg)	Maximum Power (kW)		Electronic Mass (kg		Thermal Mass (kg)	
			63,000	40	0		500	800	
CROSS Mechanism	S Mechanical Subsystem \$ 16,644,000		Electrical Subsystem		Thermal Subsystem		n	Software Subsystem	
Costs			\$151,	000 \$40,000		40,000		\$17,000	
Additional Costs	Wra	p Costs	Facility Costs		PULSE-2 Costs		sts E	Employee Salaries	
	\$5,4	498,000	\$5,056,000		\$1,668,000		0	\$19,800,000	
		CROSS Me	chanism	Mechani	sm + Te	sting	Full Ad	loption Costs	
Overall To	tals	\$16,85	2,000	\$27,405,000			\$48,874,000		
Inflation-Adj Totals	usted	sted \$28,678,000		\$46,638,000			\$83,172,000		
NASA TCNJ HULC 2024-25		⁶ Megson, T.H. G. (2007). Aircraft structures for engineering students (4th ed.). Elsevier. ⁷ National Aeronautics and Space Administration. (2005). External tank thermal protection system (NASA Fact Sheet). NASA Marshall Space Flight Center. 27 https://www.nasa.gov/wp-content/uploads/2016/08/114022main_tps_fs.pdf						27	

CROSS: Principal Outcomes

Long-Term Propellant Storage

- Controlled boil-off of cryogenic fuel using CVAPS to provide pressure stabilization
- Piston within storage tank to reduce fuel contamination

Microgravity Propellant Transfer

- Piston expulsion device allows for acceleration and orientation independent transfer capabilities
- Autogenous pressurization methods further reduces potential fuel contamination

Additional CROSS Benefits

- Adjustable storage volume provides slosh reduction
- Reduces mission reliance on Helium, a dwindling resource

Special Thanks

Dr. Karen Yan

- Professor and Department Chair,
 Mechanical Engineering Dept, TCNJ
- Professor Bijan Sepahpour
 - Professor and Project Coordinator,
 Mechanical Engineering Dept, TCNJ

Dr. Anthony Lau

Professor, Biomedical Engineering
 Dept, TCNJ

Dr. Ardeshir Tabrizi

Assistant Professor, Mechanical
 Engineering Dept, TCNJ

Mr. Brian Wittreich

□ Laboratory Technician, TCNJ

Mr. Joseph Zanetti

- Resident Machinist Supervisor, TCNJ
- Arthur E. Farmer Machinists
 - Hydraulic Components,Trenton, NJ
- Mr. Alex Diblasio
 - Owner of Ratwerks LLC and Consulting Engineer
- NJ Space Grant Consortium

Questions????

Appendix Slides

Controls System: Valves

Testing

- Developed an experimental relationship between valve position and flow rate utilizing Edibon hydraulic mechanism
- Determined valve cutoff and operational windows

Next Steps

- Test position-flow relationship with Nitrogen gas
- Install valve and test piston pressurization

Volumetric Flow Rate vs. Opening Percentage

Figure 40: H₂O Flow Rate vs Valve Position Chart

Fluids Transfer: Components

GN₂ Connection

• Secure connection between a CGA 295 regulator to the modulating valve

<u>LN₂ Connection</u>

 Connection between a VALGLO ³/₈" valve to ¹/₂" NPT Elbow

Vacuum Chamber Connection

• Connection between the Fieldpiece VP67 Pump to Vacuum Chamber

<u>Transfer Line</u>

• Connection between Tank B to the Solenoid to Tank C

Figure 26: Vacuum Chamber to Apparatus layout

Figure 27: Transfer Line Layout