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reduction versus baseline
Dyneema SK-99 5300

* Tensegrity = isolated compression nodes
suspended in a continuous tension network

 Six Tistruts conduct = 28 W at 20 K, forcing costly
boil-off on lunar depots

 [UHMWPE]: J Temp = J,conductivity+* Strength

e Mass: 31 kg assembly saves = 38 kg vs. metal
struts—plus cryocooler downsizing

* First mode 22x above the HuLC 20 Hz
e Aim:>90 % heat-leak cut and 2 38 kg mass saving UMMWPE 0.8mm Stress Vs Strain @ 23° C requirement; launch safety factors all > 2

without redesigning the tank 1500.00 P * Path-to-flight: coupon tests ’25 = TRL-5 ground

* HulC goal: keep conductive leak £5 W and survive
5 g axial / 2 g lateral loads

vibration '27 - TRL-6 ISS Pallet demo '29
1000.00

Strut vs STORM: Heat & Mass

y = 3559.2x - 100.5

 Replace six Ti struts for a pure-tension tensegrity 500.00 ’ R?=0.9878

lattice of 4 mm Dyneema SK-99 cables

e (C-Channel Ti-6Al-4V J-hooks redirect 607 kN 0.00
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launch compression into axial cable tension—no = Baseline (6 struts) = ST
bending "
° ° . S/2/2025, 125458 PM

* Figure-of-Merit: [Str/(k = p)] trade singled out 127 Max

, , 1st natural frequency 444.95 Hz
SK-99: 100x better than titanium

* CAD-driven FEA shows global mode 445 Hz and
MoS 2 2.0 in all load cases

* Eye-splice pull confirms splice efficiency; next
step is LN, coupon tests (FY-26)
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