

Structural Tensegrity for Optimized Retention in Microgravity (STORM)

Advisor: Dr. Colin Britcher

- Harrison Cole
- $_{\odot}$ Samantha Brouillet
- Logan Heath
- Silvia Martinez Piche

OLD DOMINION UNIVERSITY

WHY CRYOGENIC SUPPORTS MATTER

The 2025 NASA Human Lander Challenge: Advanced Cryogenics

Advanced Structural Supports for Heat Reduction

Why Cryogenic Storage?

•Cryogenic propellants (LH $_2$ & LOX) are vital for long-duration missions to the Moon and Mars.

•Traditional metal strut supports create thermal bridges that cause significant boil-off.

•Efficient thermal management is critical for mission sustainability.

WHAT IS TENSEGRITY?

Definition: A structural principle where isolated compression elements (struts) are held in a network by continuous tension elements (cables).

•Lightweight & Efficient

•Distributed Loads:

•Flexibility & Resilience:

CHALLENGE STATEMENT & OBJECTIVES

- **Goal:** Develop a tensegrity-based support system that reduces heat conduction by 90% (Previously >20%) compared to titanium struts.
- Replace heavy, thermally conductive supports with UHMWPE cables (Dyneema[®]) in a tensegrity configuration
- Enhance mass-to-volume efficiency and lower boil-off losses.
- Meet NASA's criteria for efficient in-space cryogenic storage. (>90 days)

Why Current Titanium Struts Won't Close the Boil-off Gap

Traditional metal strut supports create thermal bridges that cause significant boil-off.

Traditional struts conduct around 28 W and weigh 69 Kg.

Exceeds allowable heat-leak by >5×.

Figure of Merit Trade $FoM = \frac{\sigma}{\rho * \kappa}$

Material	σ _{f @20K} (Mpa)	k (W m ⁻¹ K ⁻¹)	ρ (kg m ⁻³)	σ /ρk
Dyneema				
SK-99	5300	0.46	970	11.9
Kevlar-49	3200	1.73	1440	1.28
Ti-6AL-4V	1200	6.7	4430	0.04

Dyneema® is an Ultra-High Molecular Weight Polyethylene fiber.

- 100× better strength-to-thermal-conductivity than Ti.
- 10x better than Kevlar

• [UHMWPE]: \downarrow Temp = \downarrow conductivity+ \uparrow Strength

Design Concept

- **STORM** replaces those six conductive struts with a pure-tension tensegrity lattice. Our design provides lateral stiffness and prevent slack after main-engine cutoff. The upper- and lower-ring spacing is 0.37 m, producing a 16° diagonal that satisfies fairing and weld-access limits.
- Ring mass: 28 kg, 2219-T8 Al-Li (10 mm web).
- Cable properties: σ_{ult} , @ 20 K \approx 5.3 GPa; k \approx 0.46 W m⁻¹ K⁻¹ [10].
- Hook geometry: 15 mm × 60
- mm web; shear M.o.S. \approx 3.3 under wet-launch load (Section 5).

7

Concept - 5m Tensegrity Ring

4 mm Dyneema® cables in tension provide lateral stiffness and prevent slack.

Four hollow fitanium alloy J-hooks at 90° intervals redirect launch compressive loads.

The upper- and lowerring spacing satisfies fairing and weld-access limits.

Load Path Converts Launch Compression \rightarrow Pure Tension

- During ascent, the wet-launch axial load enters the upper ring, transfers through each J-hook into a 180° return leg, and closes at the opposite hook.
- All primary elements therefore operate in tension or short length bearing, eliminating bending concerns.
- Cables never see compression avoids buckling.

Mass breakdown

Element	Qty	Unit mass (kg)	Sub-total (kg)
2219-T8 Al-Li rings (φ 5 m, 10 mm web)	2	14	28
Hollow Ti-6Al-4V J-hooks (15 × 60 × 2 mm C-section)	4	0.65	2.6
PEEK/Torlon sleeves (0.8 mm)	4	0.05	0.2
Dyneema SK-99 loop cables (4 mm Ø, 0.66 m)	4	0.5	2
Dyneema SK-99 diagonal cables (4 mm Ø, 0.74 m)	8	0.125	1
UHMWPE lugs & Ti bolts	—	—	0.6
Total STORM sub-assembly	—	—	31.4 kg
Mass saving vs. six Ti-strut baseline (6 × 4.9 l	kg) ≈ –38	3 kg (55 % reduction)	

Assumptions & Equations

*Conduction dominant transfer

*No direct radiation to cables due to sunshield

*Vacuum Convection ~0

- T_H Payload Conditions ~220K
- T_L Liquid Hydrogen Storage - 20K

Heat Transfer $Q = \frac{k * A * \Delta T}{L}$ k: Thermal Conductivity [W/(m * K)]

A: Cross Sectional Area $[m^2]$

L: Cable Length [m]

 ΔT : Temp Differential [K]

Thermal payoff: 2.4 W vs 28 W baseline

> 90 % reduction in parasitic heat flow.

^[1] The thermal conductivity of UHMWPE decreases sharply with temperature—dropping from \approx 0.46 W m⁻¹ K⁻¹ at 300 K to \approx 0.25 W m⁻¹ K⁻¹ at 20 K [10]. To remain conservative, all heat-leak calculations use the higher, room-temperature value (0.46 W m⁻¹ K⁻¹); actual boil-off in flight will therefore be lower than the numbers reported.

Structural margins:

Compression MoS 3.2

Tension MoS 3.4

2200 kg Tank * 5g Acceleration (Compression / Tension) 0.2g * 2200 kg tank (Maneuvering)-Tension / Shear Nasa SF – 2.0

Structural margins:

Torsion MoS = 3.93 Strongest

Shear MoS– 1.53 – Weakest -Pure shear Unlikely, warrants investigation for improvement

- 2200 kg Tank * 5g Acceleration (Compression / Tension)
 - 0.2g * 2200 kg tank (Maneuvering)-Tension / Shear
 - Nasa SF 2.0

Integration – Fits NASA 5 m Skirt & SLS 8 m Fairing

- The upper- and lower-ring spacing is 0.37 m, producing a 16° diagonal that satisfies fairing and weld-access limits.
- Ring mass: 28 kg, 2219-T8 Al-Li (10 mm web).
- Bolt pattern matches tank skirt.
- Stowed height < 1.1 m inside 8 m fairing

Depot-Level Impact

- Boil-off reduction: 26 W saved equates to 0.25 kg LH₂ day⁻¹, extending dormancy by >30 days for a 30-t depot.
- Cryocooler sizing: A 2.2 W conductive load plus 1.5 W radiative load keeps total <4 W—inside the 20 W capacity of a single 4 K-class pulse-tube cooler, eliminating the need for dual-cooler redundancy.

Cryogenic propellant depot with single sunshade. Image credit: United Launch Alliance, B. Kutter, 2008

Verification & Path To Flight

Coupon Testing

- Validate materials, joints, and thermal models
- Supports entry to TRL-5

• Full-Scale Ground Vibration Testing

- Structural dynamics, modal validation, system integration
- Targeting TRL-6

• Flight Demo on ISS Pallet

- \rightarrow Full environmental exposure in microgravity
- \rightarrow Demonstrate operational performance and durability
- \rightarrow Enables qualification for flight missions

Verification Pla	an
to Reach TRL-6	S
by FY-29	

•	FY-26 subscale	
	thermal-vac test	

- FY-27 micro-gravity flight demo
- FY-29 structural cert on Artemis-IV

Level (NASA TRL)	Milestone	Facility	FY	Exit criteria
Coupon (→ 4)	LN₂ shear of hollow hook • SK-99 loop tensile & 105-cycle creep	ODU Materials Science Lab	25 Q4	FS ≥ 1.5 × LC-2 • ΔL ≤ 2 %
¼-scale sub-assembly (→ 5)	90° ring sector + 2 loops, cryo sine- burst (5 g / 2 g)	GSFC-STD- 7000 Shaker	26 Q1	M.o.S. ≥ 1.25 • no slack
Full-scale ground (→ 5)	Complete ring pair: cryo sine-vibe + boil-off calorimetry	GSFC Shaker + MSFC J-Tank	27 Q3	Q ≤ 2.5 W
Flight demo (→ 6)	1 m STORM on CLD pallet, 180-day LH₂ dwell	ISS CLD rideshare	29 Q1	Q ≤ 3 W • ΔL < 0.5 %
Certification (→ 6)	NASA LCB FRR & CDR closeout		29 Q3	TRL 6 declaration per

Tensile Testing

(Left)Tensile Testing Adapter Setup(Right) Dyneema Sample withBrummel eye splice

UMMWPE 0.8mm Stress Vs Strain @ ~23° C

Risk Matrix: Top 3 Items & Mitigations

ID	Risk	L*	C *	Rating	Mitigation
R-1	Cable creep > 2 % over 10	2	3	Μ	Long-term creep rig + 4.5 mm Cable oversize
	yr				
R-2	J hook internal flaw	2	2	L	X-Ray + LN₂ proof test
R-4	Faulty cable anchor splice or in-service SK-99 loop break (manufacturing defect, micrometeoroid, or creep rupture)	1	5	Μ	 Proof-load each loop to 1.5 × LC-2 before installation Install dual parallel loops at each of the four axial stations (load ≤ 50 % on each) Embed fiber-Bragg-grating (FBG) strain sensors; drop in cable tension triggers safe-mode vent. Shield diagonals and loops with micrometeoroid bumper inside vehicle shroud

Footnote on L and C**

L = Likelihood and C = Consequence per the NASA 5×5 risk matrix (NPR 7120.5):

1 = Remote/Negligible, 5 = Almost Certain/Catastrophic. The ratings shown are post-mitigation.

Path-to-Flight Cost Snapshot

- Phase A-C total: \$23 M
- Per-unit recurring: \$2.1 M

WBS	Phase A	Phase B/C	Phase D (flight demo)	Total
1.1 Concept & Req.	0.25	—	—	0.25
1.2 Design	_	1.05	—	1.05
1.3 Fabrication	_	0.8	0.45	1.25
1.4 Ground testing	_	0.3	1.1	1.4
1.5 Flight demo pallet	_	_	5.1	5.1
1.6 Mission ops & data	_	—	0.6	0.6
1.7 PM / QA / SE	0.05	0.23	1.1	1.38
Subtotal (w/ 30 % reserve)	0.3	2.38	8.35	11.03
Launch services (ISS CLD rideshare fee)	-	_	12	12
Grand Total	\$23.0 M			

23 M dev vs 150 M LH₂ saved in 10 years

Value Proposition – STORM Makes Lunar Cryogenic Logistics Lighter, Cheaper, Sooner

90 % heat-leak cut • 38 kg mass save • TRL-6 by 2029

Beyond Propellant Depots – Other Users

- Orbital fuel depots
- Lunar ISRU plants
- Deep-space cryo stages

Conclusion

STORM demonstrates that a pure-tension, hollow-hook tensegrity support can meet NASA's structural safety factors, slash conductive heat leak, and mature to flight readiness on a realistic schedule and budget.

- Structural Credibility Finite-element analysis shows minimum ultimate safety factors of MoS ≥ 3.0 (loop cables) and 3.3 (hollow Ti hooks) under the 5 g wet-launch load; the first global mode is 445 Hz, over 22× the HuLC 20 Hz target.
- Thermal Performance Four 4 mm Dyneema SK-99 loops, eight diagonals, and hollow J-hooks conduct only 2.2 W at 20 K—> 90 % less than a titanium-strut baseline, extending depot dormancy by ~30 days and enabling single-cooler architectures.
- Mass Advantage The complete assembly masses 31.4 kg, saving ≈ 38 kg vs. metal struts; secondary fairing and adapter knock-on savings raise the total vehicle benefit to ~50 kg.

Frank Batten College of Engineering and Technology

Structural Tensegrity for Optimized Retention in Microgravity

Harrison Cole, Samantha Brouillet, Logan Heath, Silvia Martinez-Piche

Mechanical and Aerospace Engineering Department Old Dominion University, Norfolk, VA

Purpose & Challenge

- Tensegrity = isolated compression nodes suspended in a continuous tension network
- Six Ti struts conduct ≈ 28 W at 20 K, forcing costly boil-off on lunar depots
- HuLC goal: keep conductive leak ≤ 5 W and survive
 5 g axial / 2 g lateral loads
- Aim: > 90 % heat-leak cut and ≥ 38 kg mass saving without redesigning the tank

Methods

- Replace six Ti struts for a pure-tension tensegrity lattice of 4 mm Dyneema SK-99 cables
- C-Channel Ti-6AI-4V J-hooks redirect 607 kN launch compression into axial cable tension—no bending
- Figure-of-Merit: [Str/(k * ρ)] trade singled out SK-99: 100× better than titanium
- CAD-driven FEA shows global mode 445 Hz and MoS ≥ 2.0 in all load cases
- Eye-splice pull confirms splice efficiency; next step is LN₂ coupon tests (FY-26)

(Left)Tensile Testing Adapter Setup (Right) Dyneema Sample with Brummel eye splice

Figure of Merit [$\sigma/ ho*\kappa$] Material Comparison

Material	σ _{f@20K} (MPa)	k (W m ⁻¹ K ⁻¹) ρ (kg m ⁻³) σ /ρk
Dyneema SK-99	5300	0.46	970	11.9
Dyneema SK-75	3600	0.46	970	8.07
Kevlar-49	3200	1.73	1440	1.28
Ti-6AL-4V	1200	6.7	4430	0.04

UHMWPE Vert Cables*4_____ Torsional / Lateral UHMWPE Cables *8____ Ti-AL C-Channel J-Hooks *8____

Proposed Tensegrity Support System (S.T.O.R.M.)

Results & Conclusions

- Conduction drops to **2.2 W** \rightarrow > **90 % heat-leak** reduction versus baseline
- [UHMWPE]: \downarrow Temp = \downarrow conductivity+ \uparrow Strength
- Mass: 31 kg assembly saves ≈ 38 kg vs. metal struts—plus cryocooler downsizing
- First mode **22× above** the HuLC 20 Hz requirement; launch safety factors **all > 2**
- Path-to-flight: coupon tests '25 → TRL-5 ground vibration '27 → TRL-6 ISS Pallet demo '29

Conductive heat leak (W) Structural mass (kg)

References

National Institute of Aerospace, "2025 Human Lander Challenge Proposal Guidelines," Aug. 2024. Available: https://hulc.nianet.org/wp-content/uploads/2025-HuLC-Competition-Proposal-Guidelines.pdf

- P. Kittel, "Comparison of Dewar Supports for Space Applications," Cryogenics, vol. 33, no. 4, pp. 429-434, 1993.
- G. Tibert, Deployable Tensegrity Structures for Space Applications, Ph.D. dissertation, Royal Institute of Technology, Stockholm, 2002.
- R. Honour, R. Kwas, G. O'Neil, and B. Kutter, "Thermal Optimization and Assessment of a Long-Duration Cryogenic Propellant Depot," AIAA SPACE Conf., Pasadena, CA, Sept. 2009, Paper 2009-3035.

Acknowledgements

Special thank you to **Dr. Colin Britcher** for his advisement and patience over the course of the project.

- Dr. A. Tamhane for his project management guidance.
- Dr. A. Kulkarni for material testing
- Lastly, thank you to the sponsors

Works Cited

- C. McLean et al., "Simple, Robust Cryogenic Propellant Depot for Near-Term Applications," in Proc. IEEE Aerospace Conf., Big Sky, MT, 2011, Paper 2011-1044.
- Daksh Shelly, Seul-Yi Lee, Soo-Jin Park, Compatibilization of ultra-high molecular weight polyethylene (UHMWPE) fibers and their composites for superior mechanical performance: A concise review, Composites Part B: Engineering, Volume 275,2024
- D. W. Plachta, W. L. Johnson, and J. R. Feller, "Cryogenic Boil-Off Reduction System Testing," NASA Glenn Research Center, Tech. Rep. GRC-TR-2014-218017, 2014.
- G. Tibert, Deployable Tensegrity Structures for Space Applications, Ph.D. dissertation, Royal Institute of Technology, Stockholm, 2002.

Backup Slides