

THERMOS

Translunar HEat Rejection and Mixing for Orbital Sustainability

Beverly Ma '26, Daniel Rojas '27, Stone Smith '27, Pranav Bala '27, Nicole Ding '27 Faculty advisors: Dr. George Lordos, Prof. Jeffrey Hoffman, Prof. Olivier de Weck

NASA'S HUMAN LANDER CHALLENGE 2025 THEME: ADVANCED CRYOGENICS 23-26 June 2025, Huntsville AL

Without boiloff management, the 120-day Artemis III mission would be infeasible, and NASA would be unable to return to the Moon.

Propellant capacity of HLS Starship V3 = 2,300 t

NRHO boiloff with bare steel 90d x 38 t/day = **3,420 t**

LSP boiloff with bare steel 30d x 273 t/day = **8,190 t**

To solve the issue of storing cryogenic fluids for Artemis III, we used NASA's systems engineering approach to 'architect from the right'.

Model subsystem performance and effects on mass and delta-v budgets Model mission modes and alternative architectures (i.e. active, passive, hybrid,)

- Select Figures of Merit for benefit, cost and risk

We developed a model (see demo at poster session) to justify our architectural decisions by quantifying our key Figures of Merit.

			-			
Major Decision	Decision Options		Figure of Merit	Definition	Rationale	
Earth Departure Orbit	LEO, TLI-1000 m/s		Lunar Ascent	Propellant mass	More propella	
Starship Version	V2, V3		Margin (LAPM) Orion, divided by		margin increase mission	
Structural MLI	None, 20, 40, 60 layers			lunar ascent	crew safety	
Cryocoolers	None, Petach, Creare		Number of Tankers	Number of tanker launches	A proxy for	
Take deployable arrays?	No, Yes			required for mission	operating cost	
Twisted baffles for mixing?	No, Yes		Relative Sum of "TRI		The more tech	
Stress testing: option to increase degradation factor of			Schedule Risk	gap" for required technologies	and the lower TRL, the high	

Stress testing: option to increase degradation factor of MLI from DF4 to DF8, and option to fail 0-7 Cryocoolers.

the schedule risk

Thorough analysis of propellant burns and modeled boiloff led to three major realizations that guided our design.

Earth Departure Orbit	LAPM	Tankers
TLI-3200 (i.e. LEO)	-22.6%	8
TLI-1600	17.8%	14
TLI-1300	22.3%	14
TLI-1040	25.5%	15

To select attractive system concepts, we traded off Lunar Ascent Propellant Margin (LAPM) vs. tanker launches and schedule risk.

THERMOS enables NASA to choose between increased mission robustness and lower schedule risk.

Option 1 summary: best LAPM performance.

V3 Hybrid (Architecture 023-MCB)

Option 2 summary: simplest \rightarrow lowest schedule risk.

Option 3 summary: Somewhere in Between.

V2 Hybrid (Architecture 019-MCB)

- V2 HLS and Depot
- MLI
- Cryocoolers
- Vertical solar arrays
- Sawtooth radiators

- Baffles
- Mixing Pump
- 15 tanker flights

Lunar Ascent Propellant Margin: 16.2%

For conceptual design of subsystems, we selected 023-MCB with Multi Layer Insulation (MLI), Broad Area Cooling (BAC) and our novel concept for hydrodynamic mixing baffles 'ETHER'.

ltem	Mass (kg)		Major Decision	Architecture 023-MCB
V3 HLS	138,767		Earth Departure Orbit	TLI-1040 m/s
MLI System	12,797		Starship Version	V3 for both HLS and Depot
BAC System	5,389		Structural MLI	40 layers front, 60 layers side
Synergy	(-1,979)		Cryocoolers	7x Creare 150W / 90K
Other	2,100	Conversion Amazile Advances	Deployable arrays?	Yes (8.4 kW)
Payload leave	13,152		ETHER baffles?	Yes
Payload return	30,000		Mass of 023-MCB HLS	157 tons

MLI and Shielding deter anything--heat, ionizing radiation, micrometeoroids, orbital debris-- from ever reaching the tanks

Anodized Aluminum Aeroshell (.5 mm)

6 Ply Kevlar 29 Style 710 (.17 mm)

Kevlar Fibers (.17 mm)

Aluminized Beta Cloth (.2 mm)

60 Alternating Layers Aluminized Kapton (22.86 mm) Dacron Netting

Kevlar Fibers (.17 mm)

G-10 Fiberglass and Tank-Welded Steel Tubes (14 mm)

Stainless Steel Tank Wall (38.77 mm)

Propellant

The THERMOS MLI design is mounted on the BAC cooling tubes, helping to prevent some of the heat from reaching the tanks.

Kevlar fibers at both ends of the blanket and an aluminum aeroshell serve as a double Whipple shield and add strength to survive launch.

Beta cloth protects the aluminized kapton layers from ultraviolet radiation.

Aluminum aeroshell and aluminized beta cloth protect the HLS and Depot from charging when traveling through the radiation belts.

·····
Anodized Aluminum Aeroshell (.5 mm)
6 Ply Kevlar 29 Style 710 (.17 mm) Aluminized Beta Cloth (.2 mm)
60 Alternating Layers Aluminized Kapton (22.86 mm) Dacron Netting
Kevlar Fibers (.17 mm) G-10 Fiberglass and Tank-Welded Steel Tubes (14 mm)
Stainless Steel Tank Wall (38.77 mm) Propellant

The BAC will employ seven Creare 150W cryocoolers which together serve 28 cooling tubes that are flat welded onto the tank.

Hybrid MLI and BAC on a V3 Starship (concept # 023-MCB) yields a robust architecture delivering the required 10% LAPM performance, even in case of 2x MLI degradation and complete cryocooler failure.

Tank Wall

Architecture and Failure Mode	Starship Version	Boiloff Rate at Lunar South Pole (tons per day)	LAPM
Hybrid 023-MCB-DF4-FC0 (Nominal)	v3	4.5	25.5%
Nominal MLI, failed Cryos	v3	4.7	24.6%
Doubled heat leak, working Cryos	v3	9.0	12.7%
Doubled heat leak, failed Cryos	v3	9.3	10.5%
Passive 026-MB-DF4 (Nominal)	v2	3.4	14.6%
+25% heat leak (DF 5)	v2	4.2	9.0%
+50% heat leak (DF 6)	v2	5.1	3.5%
Doubled heat leak (DF 8)	v2	6.7	-7.6%

To prevent temperature stratification we modified existing baffles within the fuel talk into hydrodynamic geometries.

The modified baffles will induce mixing by taking advantage of centrifugal forces from axial rotation.

Our novel propeller-shaped baffles retain their original anti-sloshing function, and our cryopump provides a redundant mixing capability.

A technology maturation plan has been designed to lead to rapid integration and implementation.

Category	Technology	2025	2026	2027	2028	2029
Active Cooling	Creare Cryocoolers	4	6	7	8	8
	Double Whipple Shield	9	9	9	9	9
Passive Cooling	Sawtooth Radiators	4	6	7	8	8
	Large MLI Blanket	6	7	8	9	9
	LVSAT	6	6	7	8	8
Power Generation	LUNAR SABER	4	5	6	6	8
	Mixing Pump	6	7	8	8	8
ETHER	Twisted Baffles	3	5	6	7	8

The THERMOS project has been architected to support trade-off of technical vs. schedule risk during detailed design in H2 of 2025.

Images credit: SpaceX; Sampson et al, IAC-19.D2.5.9x48999; Creare

Starship V2 (faster?) or **V3** (higher-performing)

The overall cost of THERMOS is affordable, and the 15 tanker launches per Artemis mission are within range of past estimates.

Design and development is currently underway for a baffle prototype manifested for launch on an Oligo satellite in February.

Preliminary, high-level design of sub-scale space prototype of THERMOS ETHER subsystem.

Beyond our prototype, to facilitate mitigating risks, THERMOS was designed around proven and well-understood technologies.

Likelihood → Impact ↓	Very Unlikely	Unlikely	Possible	Likely	Very Likely
Severe	R6, R16	R1			
Major	R2, R10	R4, R15, R20	R3, R11, R13, R17		
Moderate	R14	R9	R7, R8, R12, R18, R19	R5	
Minor	R21	R22	R23		
Negligible		R24	R25		

Overall, THERMOS delivers sufficient long-term cryogenic propellant storage performance to not only meet the needs of Artemis III, but also return to HEO for refilling and then return to LEO for reuse.

Starship HLS De	Ita V and Pr	op Boiloff Budg	get for Artemis III										
Starship version:	V3	Dep. Orbit: TLI -	1040	m/s	PROPNEEDHEO	1,100,363							
Endurance NRHO:	90	Endurance LSP:	30	days									
Front insulation:	MLI40-A139	1-Way Payload:	13,152	kg									
Side insulation:	MLI60-A144	Return Payload:	30,000	kg									
Event - STAGE or Burn #	From	То	Purpose	Event Start at Mission Elapsed Time (MET) (seconds)	Event Ends at Mission Elapsed Time (MET) (seconds)	Wet mass before Event (kg)	Propellant mass before Event (kg)	Delta V (m/s)	Total Propellant Received during event (kg)	Total Boiloff during Event (kg)	Wet mass after Event (kg)	Propellant Mass Change	Propellant mass after Event (kg)
1	LEO 250	HEO	Enter HEO	0	300	2,500,226	2,300,000	2,160	0.0	4.3	1,399,838	-1,100,388	1,199,612
REFILL	HEO	HEO	Refill propellant	300	9103	1,399,838	1,199,612	0	1,100,388.1	25.6	2,500,201	1,100,363	2,299,974
2	HEO	TLI	TLI Manuever	9103	268303	2,500,201	2,299,974	1,040	0.0	752.8	1,890,239	-609,962	1,690,013
3	TLI	NRHO	Enter NRHO	268303	268483	1,890,239	1,690,013	450	0.0	0.5	1,675,087	-215,152	1,474,861
LOITER	NRHO	NRHO	Loiter at NRHO	268483	8044483	1,675,087	1,474,861	0	0.0	22,584.4	1,652,503	-22,584	1,452,276
DOCK	NRHO	NRHO	Dock with Orion	8044483	8048083	1,652,503	1,452,276	100	0.0	10.5	1,608,708	-43,794	1,408,482
4	NRHO	LLO 50	Enter LLO	8048083	8062483	1,608,708	1,408,482	750	0.0	41.8	1,315,219	-293,489	1,114,993
5	LLO	LSP	Landing Burn	8062483	8066083	1,315,219	1,114,993	2,050	0.0	10.5	758,438	-556,781	558,212
SURF MISSION	LSP	LSP	Operations during Surface Missio	8066083	10658083	758,438	558,212	0	0.0	134,049	624,389	-134,049	424,163
6	LSP	LLO 50	Enter LLO	10658083	10661683	611,237	424,163	1,860	0.0	10.5	370,923	-240,315	183,848
7	LLO 50	NRHO	Enter NRHO	10661683	10676083	370,923	183,848	750	0.0	41.8	303,220	-67,703	116,146
DOCK	NRHO	NRHO	Dock with Orion	10676083	10679683	303,220	116,146	100	0.0	10.5	295,176	-8,044	108,101
8	NRHO	TEI	TEI Manuever	10679683	10938883	295,176	108,101	450	0.0	753	260,826	-34,350	73,751
9	TEI	HEO	HEO	10938883	10938903	260,826	73,751	1,040	0.0	0	197,272	-63,554	10,197
PROP XFER	HEO	HEO	Prop xfer at HEO	10938903	11025303	197,272	10,197	0	0.0	251	397,021	199,749	209,946
10	HEO	HEO	Phasing at HEO?	11025303	11111703	397,021	209,946	0	0.0	251	396,770	-251	209,695
11	HEO	LEO 250	Enter LEO	11111703	11154903	396,770	209,695	2,160	0.0	125	222,146	-174,624	35,071

The THERMOS system and mission architecture are enabling for Starship HLS to perform its Artemis III mission by 2029.

Team: Beverly Ma '26, Daniel Rojas '27, Stone Smith '27, Pranav Bala '27, Nicole Ding '27 Faculty advisors: Dr. George Lordos, Prof. Jeffrey Hoffman, Prof. Olivier de Weck

Appendix Slides

Parameter or Intermediate Variable Name	Excel Variable Name V	alue	Units
LCH4 to LOX mass ratio	LCH4LOXRATIO	0.28	none
Sea level Raptor ISP	SLRAPISP	327	5
Vacuum Raptor ISP	VACRAPISP	380	5
9	GEE	9.80	m/s^2
Duration of landing burn	LANDBURN	10.00	5
Delta V needed Starbase to LEO 250 x 250 (incl 2,000 m/s losses)	DVEARTHTOLEO	9,500	m/s
Delta V LEO 250 x 250 to TLI	DVLEOTOTLI	3,200	m/s
Delta V LEO 250 x 250 to HEO 250 x ????	DVLEOTOHEO	2,200	m/s
Delta V HEO 250 X ???? to TLI	DVHEOTOTLI	1,000	m/s
Delta V HEO 250 X ???? to LEO 150 x ? (reentry)	DVHEOTOLEO	50	m/s
Delta V TLI to NRHO	DVTLITONRHO	450	m/s
Delta V Orion docking burn	DVORIONDOCK	100	m/s
Delta V NRHO to LLO 50 x 50	DVNRHOTOLLO	750	m/s
Delta V LLO 50 x 50 to lunar South pole	DVLLOTOLSP	2,050	m/s
Delta V NRHO to TEI	DVNRHOTOTEI	450	m/s
Delta V TEI to HEO 300 x ????	DVTEITOHEO	1,000	m/s
Delta V TEI to LEO 250 x 250	DVTEITOLEO	3,000	m/s
Delta V Lunar South Pole to LLO 50 x 50	DVLSPTOLLO	1,860	m/s
Delta V deorbit burn from LEO 250 x 250	DVDEORBITLEO	100	m/s
Delta V budget for orbital maneuvers of tanker	DVTNKORBMAN	50	m/s
Delta V budget for landing burn	DVLANDBURN	196	m/s
Super Neavy dry mass (excluding upper stage)	SHDRYMASS	250.000	ka
Super Heavy propellant mass (note - not tracking LCH4/LOX for SH)	SHPROPMASS	4.050.000	ka
Super Heavy propellant remaining at MECO	SHPROPREMMECO	400.000	ka
Total wet mass of upper stage being boosted if boosting tanker	MASSUPPERSTAGETNK	2.638.767	ka
Total wet mass of upper stage being boosted, if boosing depot	MASSUPPERSTAGEDEP	2,668,990	ka
Total wet mass of upper stage being boosted if boosting lunar cargo s	MASSUPPERSTAGECARGO	2.578.499	ka
Delta V imparted on upper stage by SH	STARSHIPOVATSTAGING	2,393	mis
Terminal velocity of tanker (for belly flop maneuver)	TNKTERMVEL	80	m/s
Tanker dry mass (structures only, excl. payload)	TNKDRYMASS	138,767	kg
Tanker propellant mass (all)	TNKPROPMASS	2,500,000	kg
Tanker LOX "payload"	TNKLOXPAYLOAD	0	kg
Tanker LCH4 "payload"	TNKLCH4PAYLOAD	0	kg
Tanker propellant delivered to HLS at HEO (max)	MAXPROPDELHEO	200,000	kg
HLS dry mass (structures only, excl. Artemis crew/eqpmt)	HLSDRYMASS	178,499	kg
HLS propellant mass (all)	HLSPROPMASS	2,300,000	kg
HLS LOX mass	HLSLOXMASS	1.800.000	kg
HLS LCH4 mass	HLSLCH4MASS	500,000	kg
Tanker propellant transferred to Depot per trip	TNKPROPDELIVERED	287.647	ka
Number of tankers required to fully refill tanks of a LEO Depot	NOTANKERS	15	number
Devel dou make	DEPORYMAN	168 000	ka
Dept ory mass	DEPORTMASS	2 500 000	kg
Depot properant mass (all)	DEPPROPMASS	2,500,000	kg
Depot LOX - payload	DEPLOXPAYLOAD	1,996,522	NO
Debor COM Daligag.	DEPLOHAPATLOAD	543,478	×g

Delta V imparted on Depot by SH	DEPDVATSTAGING	2,377	m/s
Time for propellant transfer for Depot	DEPPROPXFERTIME	20,000	5
Propellant transfer rate	PROPXFERRATE	125.0	kg/s
Density for steel 301	ST301RHO	7,930	kg/m*3
Area of Starship solar panels		250	m^2
Solar conversion efficiency (MOL)		37%	
Power system efficiency		80%	
Electrical power available in HEO / NRHO orbit (facing Sun)		101,158	We
Electrical power available on lunar surface		50,579	We
Excess power available in NRHO to run cryocoolers	EXCESSPOWERNRHO	50,579	We
Boiloff Rates			
HLS boiloff rate at LEO	BORATELEO	0.00758	kg/s
Depot boiloff rate at LEO	BORATELEO_DEP	0.00018	kg/s
Tanker boiloff rate at LEO	BORATELEO_TNK	0.16897	kg/s
HLS boiloff rate at NRHO	BORATENRHO	0.00000	kg/s
Depot boiloff rate at NRHO / HEO	BORATENRHO_DEP	0.00000	kg/s
HLS boiloff rate at LSP	BORATELSP	0.03331	kg/s

			HLS	DEP	TNK	
Starship Version			V3	V3	V3	
Passive Insulation solution - SS front			MLH0	MUH0	301STEEL	
Passive Insulation solution - 55 sides			MLKO	MLH0	301STEEL	
Cryocooler technology			PETACH	PETACH	NONE	
Max thermal lift per cryocooler			1500	600	0	
Number of Cryocoolers to use			4	4	0	
Custom Baffes for Prop Mixing			20 Curved	1D Curved	Regular	
Not heat flux into propellant tanks	NETHEATFLUX	LEO	3713	86	82778	w
Net heat flux into propellant tanks	NETHEATELUX	NEHO/HEO	0	0		w
Net hand first join non-sellent target	NETHEATELUX	1.52	16317			
ten neu nur nur properare anna	HE THERT EAR	Car.	199211	_		
	HOVARI CIX	214000.00				When
Barlieff anto 1 OV hash	HENCLOW	214000.00	0.000477	0.00000	0.00044	to step
Boliof rate LOX tank		NEWO LIVEO	0.00000	0.00000	U. TROAT	Ng/ S
Bokof rate LUX tank		NOTIFICO	0.00000			Ng/ N
Boiloff rate LOX tank		LSP	0.03812			Ng/ 5
	HVAPMETH	511000.00				Wakg
Boloff rate LCH4 tank		LEO	0.00363	0.00008	0.08100	kp/s
Boiloff rate LCH4 tank		NRHO / HEO	0.00000	0.00000		kp/s
Boiloff rate LCH4 tank		LSP	0.01597			kg/s
Net Heat Flux Calculations						
Projected area front	FRONTAREAPRO		63.6	63.6	63.6	m2
Area side	SIDEAREA		1.747.4	1.747.4	1747.4	m2
	UNDERFERIEN.		1,141.14	1,140.74	1.5 4174	
Orbit management local areas incluing at firm	OMERCATEUR	150	505	50%	6.94	
Orbit average fort area looking at our	ONFRONTING	150	00%	00%	07%	
Orbi-average side area looking at oun	OVERGENERA	160	0.00	0%	0%	
Orbit-average front area looking at Earth	OWNONTEARCH	LEO	41%	41%	41%	
Orbit-average side area looking at Earth	OASIDEEARTH	LEO	29.5%	29.5%	29.5%	
Orbit-average front area looking at Sun	OAFRONTSUN	NRHO	100%	100%	_	
Orbit-average front area looking at Sun		LSP	0%	0%	0%	
Orbit-average side area looking at Sun		LSP	50%	50%	50%	
Orbit-average side area looking at Moon		LSP	50%	50%	50%	
Front absorptivity			0.02	0.005	0.25	
Front effective emissivity			0.02	0.005	0.58	
Side absorptivity			0.016	0.005	0.25	
Side effective emissivity			0.016	0.005	0.58	
Environmental heat flux reaching exterior tar	& ENVHEATFLUX	LEO	6460	1947	77771	Wth
Environmental heat flux reaching exterior tar	& ENVHEATFLUX	NRHO	1739	435		WB
Environmental heat flux reaching exterior tar	& ENVHEATFLUX	LSP	20763			WB
Environmental heat flux reaching tanks	ENVHEATFLUX	LEO	6450	1947	77774	WD
Environmental heat flux reaching large	ENVHEATELUX	NRHO	1739	435		WB
Environmental heat flux reacting tarks	ENAMEATELIN	1.58	20263	477		W.D.
Contraction of the second man	C. THERE IS A	1.00	201-00			
Internal heat flux conducted in tarily	INTREATED UP		500	500	500	W.D.
internal real flux conducted to tarks	INTREATIVES.		900	500	500	-101
Failer annual based from party side of states	Baderbalds Co.	150	174			
oour panel heat hux onto side of lanks	BACKPINNELFLUX	LEO	124	39	4907	N D
sour panel heat this onto side of tanks	BACKPINNELFLUX	10010	211	00		N D
Solar panel heat flux onto side of tanks	BACKPANELFLUK	LSP	1054			N'D
Power-limited cooling capacity (in orbit)			3372	3372		
Power-limited cooling capacity (on lunar surf	lace)		7200	7200		
Manuf Roy and and the Cold for a daily						
mean mux removed by U.L. (in prov)			-3372	-2400	0	Wth

Dashboard knobs-	face of same	ware .			-	And a
Performance goals / decisions						And a support of the second se
Repres Entyrance at MPIO	REDENDMEND				-	brait counteries were unter the
Report Entrance #13P	REGENOLSP	-			100	Allerte II regulariare spinol la les flue fils du la disse d'APPC endecisio 8 safety regularizatio l'acteri laurch antines intend
Danily 16.5-Pauloek aloging as then	ILSIMAPPARLOAD	TT.AM			- 14	This can be includently ALT assert proparties margine, includes all parceleter aspectation apppment, consumables, means, deployable actor ampti- anything that will play or Most
America (4.5 Pachaetic Internet (4844)	H.SPATLOADMARS				.14	This can be based with ALT accord propalated mergins. It includes all apercalipsed hobital apparent metabolics in Standage ALS. The creat and any ecopyment they have to bring frac-
maa mudi aata vitus (400 m.%).	T. MANUS	-			-	Not the MOTI for LGD legative stats. The legative HED argues, the stress the decay is the form of the legative state of the legativ
Dashboard knobs - Technology Choices	Default Variable Names	-	Value	Value	Proportions Margin LBP	25.5%
		Perika.	For Deput	For farmer	Total Burniss	15
		default cares	200.000			
Annuma Verson	statemy	-	-	-		Overgang this allows on its law the model with V1. V2 or V3 Standag and one have maxim- maximity is advector. For Standag space, we cOOPLP (MLST set.
Parales Transmiss and and Table	Patanou,/kost	MORE	(MARIE)	0000000		This delives the persons insulation attemps for the front of standing in g. area above the part of persons and for personal persons.
Passing Statistics adults - 32 adus	-	-	-	-		This address the parents includes minings for the state of standing (e.g. arrest write the same persists, if such (and expressions are used, the mass of the BL Ministerial support testers the distantial
Radialist design. Sections of some provels	PERCARDUCTORS	-	-	Marco		"Sound-off" is a design with a grad mass panelity where the ranketic panel's cross section that a same state of the same factory for land how too announce, whereas the same tacking at space how high sign announce.
Crystalin Indexings	CHIVOCOOLUMS	-	-	(AONE)		Bits before stratifier action proceedings are used to achieve 2000 or total setterating separatelyses action forms to the spectre. However, there are not to action of VELS, we have the third spectra in MPICC as the design bank for unless rooms it and source among these and the UBArine, if any systemetric are used, a fixed mass is added for the relation of space and manifolds.
Oyo formy the Thermal Power of Drycostiens used per Drycostier Drift	CRIOPONER	1800			404	walks of land minimality organization (counting toportly)
Number of Crystensies in one	NUMBERCHIOS			10800		the number of inputsibles used. Togethar with the type of organizates the determines late scoring inspects, tota power demand and total additional mass.
Table single-paties asker pringle as 7-map particular to preservice strates and the preservice strates	UNARCHIOS					
Beffes Colorized for Prop Mong	CURTEMPLEE	40.0er	10.04	Pages		
Dashboard knobs - orientations (k	ocheal to optimal)					
Overlative statute at LEO	ORIENTLES	famler	faster	Tenho		
Orientation strategy at HEID	ORENTHED	faulte	faulte	1000		
Orantation ettalogy at 1994O	ORENTWORD	Pawlin				
Dashboard knobs used for stress-	testing the HLS mice	ien .				
BKJ (Repetator factor	M.DEGRADE	-				This factor is multiplied with effective emissionly, it is multiplied as an average across the action patient movation of the HL2 system.
Number of Netesl Organisation	ANLEDCRION					Any fighting are assumed to solar upon the first starting, and then they remain marchiely the wellowy of the HLS masses.
Dashboard knobs - not used for H	w.c.					
Lana Carlos Baratas Baratas	CARDONNAL DAOPORT	tan are				The is used and its optimizing of a state of lattices and state in the
rive risk month advert	Concere Concerent	100.000				our a rest of the restriction of the second sectors of the second

			HIS.	Depot	Tanker	
Stambin Varsion			1/3	Va	1/3	
Database interviewer			AR MAD	NE MO	201STEEL	
Passing Insulation and tion - 50 sides			NE HOL	ALL MO	SOLUTION	
Passive insulation solution - do sides			DETACH	DETACH	NONE	
Cryscoler ecreology			PEIAGH	PEDALA	NUTRE 0	
Custom Reflect for Date Minister			4	10.0-4-4	Concerned and	
Custom barries for Prop Mixing			20 Curved	10 Curveo	neguar	
Baseline Dry Mass			138767	138767	138767	kg
Mass of passive insulation (front)	FRONTAREACONE	PASSINGULFRONT	2785	2785	0	kg
Mass of passive insulation (sides)	SIDEAREA	PASSINGULSIDE	27958	20968	0	kg
Delta mass of custom baffles			600	600	0	kg
Mass of cryocoolers			4200	1680	0	kg
+ Deita mass of solar panels (if sawtooth radiators us	ed)		1500	1500	0	kg
+ Mass of cooling tubes & manifolds			4669	4669	0	kg
Mass of MLI supports, if both Cryo and MLI used	FRONTAREACONE	SIDEAREA	-1979	-1979	0	kg .
Total Dry Mass of Configured Starship	SSORYMASS		178499	168990	138767	
Mass of Payloads Staying on the Moon						
Mass of deployable solar arrays			8055			kg
Consumables			2400			kg
Rovers			3000			kg.
Experiments			4000			kg .
Total	PAYLOADSTWAY		17455			kg.
MLI Calculations Section						
Custom Baffles Calculations Section						
Cryocooler Tubes Mass Calculations Sect	tion					
	Variable name	Yalue	HLS Result	Depot Result	Tanker Result	Unit
Outer diameter of cooling tube	TUBEOUTERD	14.00				enen.
Inner diameter of cooling tube	TUBEINNERD	8.00				mm
Mass of cooling tubes per m of length (incl work fluid)	LINMASSTUBES	1.09	1.09	1.09	1.09	kg / m
Lateral spacing of tubes on tank	TUBESPACING	1	1	1	1	
Length of tank	SHIPHEIGHT		69.8	69.8	69.8	
Number of tubes on tank			28	28	28	
Total length of tubes			3909	3909	3909	m
Total mass of tubes			4269	4269	4209	×g
Number of manifolds (*2X number of crycooliers)		8	8	8	8	
Mass per manifold	MANFOLDMASS	50	50	50	50	Rg
Total mass of cryocooler manifolds and tubes	MASSTUBEMAN		4669	4669	4669	kg
Mass of lightweight MLI supports per unit area	MASSMUSUPP	2				
Deployable Solar Panels Calculation						
Design power With of HLS Cryocoolers (total)			6000			Wh
Electrical power demand of cryocoolers, +20%	LUNARARRAYSPW	R	108000			We
Area of solar panels required			309.8			m*2
Specific mass of solar arrays per unit area	SPECMASSPANELS	20				kg/m*2
Total mass of deployable solar panels required			6196			kg
Plus overhead mass for tracking and structure		30%	1859			kg
Total mass of deployable arrays	MASSDEPLARRAY	5	8055			kg

THERMOS

Starship HLS Delta V and Prop Boiloff Budget for Artemis III													
Starship version:	V3	Dep. Orbit: TLI -	1000	m/s	PROPNEEDHEO	1,126,819							
Endurance NRHO:	90	Endurance LSP:	30	days									
Front insulation:	ML140	1-Way Payload:	17,455	kg									
Front insulation:	ML140	Return Payload:	30,000	kg									
Event - STAGE or Burn #	From	То	Purpose	Event Start at Mission Elapsed Time (MET) (seconds)	Event Ends at Mission Elapsed Time (MET) (seconds)	Wet mass before Event (kg)	Propellant mass before Event (kg)	Delta V (m/s)	Total Propellant Received during event (kg)	Total Boiloff during Event (kg)	Wet mass after Event (kg)	Propellant Mass Change	Propellant mass after Event (kg)
1	LEO 250	HEO	Enter HEO	0	300	2,525,955	2,300,000	2,200	0.0	2.3	1,399,136	-1,126,819	1,173,181
REFILL	HEO	HEO	Refill propellant	300	9315	1,399,136	1,173,181	0	1,126,818.8	0.0	2,525,955	1,126,819	2,300,000
2	HEO	TLI	TLI Manuever	9315	268515	2,525,955	2,300,000	1,000	0.0	0.0	1,931,102	-594,853	1,705,147
3	TLI	NRHO	Enter NRHO	268515	268695	1,931,102	1,705,147	450	0.0	0.0	1,711,299	-219,802	1,485,344
LOITER	NRHO	NRHO	Loiter at NRHO	268695	8044695	1,711,299	1,485,344	0	0.0	0.0	1,711,299	0	1,485,344
DOCK	NRHO	NRHO	Dock with Orion	8044695	8048295	1,711,299	1,485,344	100	0.0	0.0	1,665,957	-45,342	1,440,003
4	NRHO	LLO 50	Enter LLO	8048295	8062695	1,665,957	1,440,003	750	0.0	0.0	1,362,067	-303,890	1,136,113
5	LLO	LSP	Landing Burn	8062695	8066295	1,362,067	1,136,113	2,050	0.0	0.0	785,465	-576,603	559,510
SURF MISSION	LSP	LSP	Operations during	8066295	10658295	785,465	559,510	0	0.0	86,332	699,133	-86,332	473,178
6	LSP	LLO 50	Enter LLO	10658295	10661895	681,677	473,178	1,860	0.0	0.0	413,680	-267,997	205,181
7	LLO 50	NRHO	Enter NRHO	10661895	10676295	413,680	205,181	750	0.0	0.0	338,220	-75,460	129,721
DOCK	NRHO	NRHO	Dock with Orion	10676295	10679895	338,220	129,721	100	0.0	0.0	329,259	-8,961	120,760
8	NRHO	TEI	TEI Manuever	10679895	10939095	329,259	120,760	450	0.0	0	291,782	-37,477	83,283
9	TEI	HEO	HEO	10939095	10939115	291,782	83,283	1,000	0.0	0	223,068	-68,714	14,569
PROP XFER	HEO	HEO	Prop xfer at HEO	10939115	11025515	223,068	14,569	0	0.0	0	423,068	200,000	214,569
10	HEO	HEO	Phasing at HEO?	11025515	11111915	423,068	214,569	0	0.0	0	423,068	0	214,569
11	HEO	LEO 250	Enter LEO	11111915	11155115	423,068	214,569	2,200	0.0	0	234,340	-188,729	25,840

Personality of Information Visionia Name	Front Musichin Manue	Market .	diam'r.
Parameter of Profitience Variable Name	Land Parados Addie	-	-
LOPH to LOK mass ratio	LONALOBOARIO	0.28	none
Des evel Paptor IDP	SLRAPISP		
Valuari Raptar ISP	VACRAPISP	. 360	
	GEE	8.65	min_3
Duration of landing burn	LANDBURN	10,00	
Partie V counted Stationer in 1870 1871 a 1970 days 2 000 and Research	DVE ANTINESS ED	8.808	-
Della VI RO NO - TRUE TU	242 202 202		
Dense y LEO 200 4 200 to 10	EVCEDIOIC		-
Dena V LEO 250 x 250 % 4EO 250 x 7777	DATEOLOHEO	2,200	men.
Delta V HEO 250 K 1777 to 101	DYMEOTOTU	1,000	-
Deta V HEO 250 X 7777 IB LEO 150 x 7 (rearity)	DYHEOTOLEO		10.5
Deta V TU Io NRHO	DVTL/TONRHO	#50	- 19.9
Delta V Drion diviking trum	DVORIONDOCK	100	mit
Della V NRHO II: LLO 50 x 50	OVMRHOTOLLO	790	mits
Della V LLO 50 + 50 to lunar South pole	DVLLOTOLSP	2,050	mite
Delta V NRHO to TEI	OVMRHOTOTEL	450	mit
Delia V TEI to HEO 300 x 7777	OVTEITONEO	1.000	mile
Data V TEI to LEO 250 x 250	OVTETOLEO	3.000	min
Date V Loner South Pole to LLO 50 x 50	015 52105 1.0	1.860	mile
Date V depter team from 1810 360 a 250	DVDEORB/TLEO		
Parts V subrat ha which many uses of tables	Contraction of the second second		100
Clena v sudget for orstal managouins of lamar	UV INKONDADA		
Della V bulget for landing burn	DATAVORNA		-
Buger Heavy dry mass lanchiding upper stage!	BHORYWASS	256.000	40
Burner Heatry provalized many (rote - not tracking CONELOX for SH)	SHPROPMASS	4,050,000	80
Super linear provident remaining of \$5000	Suppoper Marco	400.000	
Table out many property state bases been been if Financial Instance	and the state of the latter of	A diam land	- 2-
tion we used or other and/e pead process a property mean		2,000,000	
tote well mass of upper stage being boosted, if boosing depot	RASSUPPERSTADEDEP	2,666,990	
Jors, we wast of other syde peud providing a provided must caula a	MASSUPPERSTAGECARGO	2,175,499	- 10
Delta V imparted on upper slage by SH	ETAKSHIPOVATSTACINO	2,393	-
Terminal velocity of tanker (for belty flop maneuver)	TNKTERMVEL		-
Tanket die mees februik een onte aant sandoolli	THEORYMAN	134.247	
Tasker propertiest many (all)	THEREPHONE	2 500 000	-
Take 1/4 Sector	THE OWNER OAD		10
Tester i Cell Inc. in all	The Charlen date	S	
Jane Con bayon	ALCOND BUDGED	and the	
(man hufferen serveret if all's a set o hum)	ROOMOFORDED		
HL3 dry mass talkultures only excl. Alterna crearingent)	H.SORYWASS	176,499	10
HLS propularit mass (all)	HISPROPHASE	2,300,000	80
NER LOW many	IN SUCCESSION	1 800 000	100
16.5.1 Child many	IN SI CHARACE	800,000	-
HCI COM HIM	H.H.C. HERRING		
Tanker propellant transferred to Depol per Vip	THEPROPOELIVERED	257.647	. 80
Number of tamiens required to fully refit taries of a LEO Depot	NOTANKERS	18.	number
Depol By Hask	DEPORYMASE	188,990	40
Depót propellant mass (all)	DEPPROPRASS	2,900,000	40
Depot LOX "peo/exit"	DEPLOXPHILOAD	1,856,522	40
Depth LOH# "paytiad"	DEPL CHAPKPLOAD	543.478	40
Detta V insumed on Depot by SM	DEPOVATSTAGINO	2.377	mik
Time for properlant transfer for Depot	DEPPROPRIERTIME	20,000	
Provelant transfer rate	PROPUTERRATE	124.0	a serie
Density for steel 301	\$T201RHO	2,800	Agint'S
Area of Standog solar panels		250	-112
Solar conversion efficiency (MOL)		37%	
Power system efficiency		80%	
Electrical power available in HEO / MPHO orbit (facing Sun)		101,158	ill a
Electrical power available on lunar aurtaice		50.579	We.
Excess poser available in NRHO to turt oryocoolers	EXCESSPOWERNRHO	50.57W	Vite
Balloff Rates	Carlo Carlo		
HLS boloff rate al LEO	BORATELEO	0.00758	8978
Depot boild rate at LEO	BORATELED_DEP	0.00018	8919
Tankar Soloff rate at LEO	BORATELED_THK	0.56607	30/6
HEE bolish sate at MRHO	BORATEMENO	0.00000	Ap/a
Depot toolof rate at NPIHO / HEO	BORATENRHO_DEP	0.00000	Ap/a
HLS tokef rate at LSP	BORATELSP	0.00331	Ap/A

Lookup table name	Column range name		name	
Coatings Properties Lookup Table	SURFACETYPES		COATINGLOOK	UP
Surface Material Description	Lookup name	mass in kg / m2	Abs	Emm
	don't use this			
	BLACK	1	0.99	0.98
No coating, 301 steel	301STEEL	0	0.25	0.58
White Paint	WHITE	1	0.12	0.9
Magnesium Oxide in White paint	MGOWHITE	1	0.09	0.9
AZ Tech Inorganic Low Alpha White Paint	AZTWHITE	1	0.09	0.91
silver backed, used on skylab, space shuttle, and hubble	QIOPTIQ	1	0.06	0.83
SOLEC LOMIT	SOLEC	1	0.23	0.17
MLI, 40 layers	ML140	12	0.005	0.005
MLI, 20 layers	MLI20	8	0.006	0.006
MLI, 60 layers	MLI60	16	0.004	0.004

Lookup table name			Excel data range name		
Cryocooler Version Lookup Table			CRYOLOOKUP		
Type of Cryocooler	Model var name	Row No.	SPEC MASS	PWR RATIO	
units			kg/W(th)	none	
no cryocooler used	NONE	2	0	0	
generic efficient cryocooler	GENERIC	3	2	20	
heavy, inefficient cryocooler	HEAVYGEN	4	6	60	
Petach pulse-tube cryocooler	PETACH	5	0.7	15	

Massachusetts Institute of Technology

Translunar Heat Rejection and Mixing for Orbital Sustainability (THERMOS)

Theme Category, Major Objectives & Technical Approach

- Theme Categories: (1) Large Surface Area Radiative Insulation and (2) Propellant Mixing Devices
- Major Objective: A true systems solution for a healthy Lunar Ascent Propellant Margin of Starship HLS
- Technical concept: intercept and reject heat loads, and also mix the propellant for thermal homogeneity (HLS & Depot)
- Systems approach: evaluate & stress- test conceptual designs for alternative Boil-off Control Systems, for their impact on Ascent Propellant Margin, number of tanker launches required, and also for resilience to unexpectedly high MLI degradation

Key Design Details & Innovations of the Concept

- Model-based engineering: simultaneous decisions for mission ConOps, technology infusion and system sizing, for CFM technologies which could reduce boil-off *but* also add mass
- Technical innovation 1: modified baffle geometry plus recirculation pump, leveraging regular flight operations (i.e. spin-stabilizing, settling thrusts) to mix & destratify propellants.
- Technical innovation 2: a combined MLI / Whipple Shield system mounted on tank-welded BAC cryocooler tubes, saving structural mass and intercepting heat leaks at source
- A key finding: contingency operational modes compensate for high MLI Degradation Factor (DF) up to DF of 9X if V3 Starship
 - + Cryocoolers are used, vs. just 5X if passive-only V2 Starship

Summary of Schedule & Costs: Design, Build, Fly, Fix & Fly Again!

2025 H1: Present at HuLC; H2: Detailed Design and Project Planning

- 2026 H1: Build tanks with new MLI, Cryocoolers & Baffles; H2: Flight test, aboard one of the regular Starship tests
- 2027 H1: Incorporate flight learnings; uncrewed HLS flight to LEO / HEO;
 - H2: Uncrewed HLS to HEO, NRHO & LSP, uncrewed Depot to LEO
- 2028 H1: Incorporate changes to HLS and Depot;
 - H2: repeat all uncrewed flight tests

2029 Q1: Conclude human-rating certification of THERMOS;

Q2-Q4: THERMOS available for use in crewed Artemis III mission Lifecycle development cost (internal to SpaceX): from **\$200M - \$500M** Annual Operating cost during Artemis III: from **\$40M - \$100M**

THERMOS

Very Unlikely	Unlikely	Possible	Likely	Very Likely
R6, R16	R1			
R2, R10	R4, R15, R20	R3, R11, R13, R17		
R14	R9	R7, R8, R12, R18, R19	R5	
R21	R22	R23		
	R24	R25		
	Very Unlikely R6, R16 R2, R10 R14 R21	Very Unlikely R6, R16 R2, R10 R14 R14 R14 R14 R9 R21 R21 R22	Very UnlikelyUnlikelyPossibleR6, R16R1-R2, R10R4, R15, R20R3, R11, R13, R17R14R9R7, R8, R12, R18, R19R21R22R23R24R25	Very UnlikelyUnlikelyPossibleLikelyR6, R16R1R2, R10R4, R15, R20R3, R11, R13, R17R14R9R7, R8, R12, R18, R19R5-R21R22R23R21R24R25

Risk ID	Risk Description	Impact	Likelihood	Mitigation Strategy		Boil-off venting			
R1	Complete cryocooler failure	Severe	Unlikely	Hybrid passive-active system; ETHER ensures mixing; vent gas used for pressure control	R12	induces unwanted rotational or translational thrust	Moderate	Possible	Vent direction controlled; integrated into RCS logic
R2	MLI degradation exceeds design DF = 8	Major	Rare	MLI alone will keep boil-off low enough	R13	Modified baffles amplify slosh during propulsive maneuvers	Major	Possible	CFD and dynamic modeling; shape optimization preserves anti-slosh function
R3	Propellant mixing ineffective due to baffle/pump failure	Major	Possible	CFD-tested geometry; dual-mode mixing via rotation and axial pump	P14	MLI suffers launch damage or displacement during ascent	Moderate	Dare	Perforated MLI design; Kevlar-reinforced outer shield; vibration-tested mount points
R4	Structural failure of BAC cooling tubes during launch vibrations	Major	Unlikely	Stainless steel tubes; FEA-validated welds; launch vibration testing	R15	TVS (venting system) fails to maintain proper ullage pressure	Major	Unlikely	Redundant venting paths; automated thermal-pressure feedback loop
R5	Power shortfall at lunar surface limits cryocooler operation	Moderate	Likely	Deployable vertical solar arrays; tolerate minor boil-off; prioritize mixing on surface	R16	Excess boil-off jeopardizes LAPM >10% for safe crew return	Severe	Rare	Concept stress-tested for up to 3 cryocooler failures and MLI DF = 9
R6	Delay in Starship HLS development blocks integration	Severe	Rare	Modular additive design; coordinate early with SpaceX for interface alignment		Overall system mass or volume exceeds Starship			CAD and mass tracking with
07	Internal tank sensor or axial	Madarata	Descible	Sensor redundancy; fallback to	R17	envelope Ground cryo	Major	Possible	SpaceX
R8	Excess conductive heat through MLI mounting brackets	Moderate	Possible	Use low-thermal-conductivity mounts (PEEK/G-10); verify through modeling	R18	testing does not represent true lunar/space environment	Moderate	Possible	Flight test campaign in LEO/HEO; simulate NRHO via environmental modeling
	Radiator sawtooth panel			Secondary radiators or alternate	R19	Neon leak in BAC loop or fitting contamination	Moderate	Possible	Closed-loop architecture; high-quality fittings; leak testing and pressure monitoring
R9	under specific sun angles	Moderate	Unlikely	geometry under review; validate in thermal modeling	R20	Cryocooler control software fails or behaves erratically	Major	Possible	Software-in-loop testing; fallback
B10	Material incompatibility (e.g., Al in LOX tank, charging risk with Karton)	Major	Holikely	Use compatible materials only; incorporate electrostatic discharge	R21	Slight misalignment of MLI segments during install affects emissivity	Minor	Rare	Use segment-based blankets with installation tolerance; edge sealing to prevent hot spots
R11	CFD predictions do not match true behavior in zero-g	Major	Possible	Validate via parabolic flights and ground rotation tests	R22	Moisture in test setup skews thermal vacuum results	Minor	Unlikely	Use dry nitrogen purge; redundant thermocouples; flag data uncertainty in results

Scenario number	MLIDEG RADE	FAILED CRYOS	BORATE LSP (t/day)	ASCENT MARGIN
023-MCB-DF9-FC0	9	0	7.7	14.3%
023-MCB-DF9-FC1	9	1	8.0	13.5%
023-MCB-DF9-FC2	9	2	8.2	12.2%
023-MCB-DF9-FC3	9	3	8.5	9.7%
023-MCB-DF8-FC4	8	4	7.8	11.4%
023-MCB-DF7-FC4	7	4	6.8	15.1%
023-MCB-DF6-FC4	6	4	5.9	18.1%
019-MCB-DF6-FC0	6	0	3.2	13.0%
019-MCB-DF6-FC1	6	1	3.5	11.5%
019-MCB-DF6-FC2	6	2	3.8	9.4%
023-MCB-DF5-FC4	5	4	4.9	20.7%
026-MB-DF5-FC0	5	0	3.6	9.9%
023-MCB-DF4-FC0	4	0	2.9	25.5%
023-MCB-DF4-FC1	4	1	3.1	25.1%
023-MCB-DF4-FC2	4	2	3.4	24.7%
023-MCB-DF4-FC3	4	3	3.7	23.9%
023-MCB-DF4-FC4	4	4	3.9	22.8%
019-MCB-DF4-FC0	4	0	1.8	18.5%
019-MCB-DF4-FC1	4	1	2.1	17.7%
019-MCB-DF4-FC2	4	2	2.4	16.8%
019-MCB-DF4-FC3	4	3	2.6	14.9%
026-MB-DF4-FC0	4	0	2.9	14.7%
019-MCB-DF4-FC4	4	4	2.9	11.5%

Lookup table name			Excel data range name		Rows lookup rar	nge:
Starship Version Lookup Table			STARSHIPLOOKUP		SHIPLOOKUP STARSHIPLOOKUP_RO	
Starship Version	Model var name	Row No.	V1	V2	V3	Units
Max payload mass to destination		2	0	100000	200000	kg
Tanker propellant load	TNKPROPMASS	3	1200000	1600000	2500000	kg
Depot propellant load	DEPPROPMASS	4	1200000	1600000	2500000	kg
HLS propellant load	HLSPROPMASS	5	1200000	1500000	2300000	kg
Ship height	SHIPHEIGHT	6	50.3	52.1	69.8	m
Tanker dry mass baseline, before tech	TNKDRYMASS	7	100000	103578	138767	kg
Depot dry mass baseline, before tech	DEPDRYMASS	8	100000	103578	138767	kg
HLS dry mass baseline, before tech	HLSDRYMASS	9	100000	103578	138767	kg
Booster prop load	SHPROPMASS	10	3300000	3650000	4050000	kg
External surface area of Starship	SURFACEAREA	11	1428	1479	1979	m2
Front surface area of Starship, projected	FRONTAREAPROJ	12	64	64	64	m2
Front surface area of Starship, conic	FRONTAREACONE	13	232	232	232	m2
Side surface area of Starship	SIDEAREA	14	1196	1247	1747	m2
Baffles Subsystem Mass	STDBAFFLES	15				kg

			HLS	DEP	TNK	
Starship Version			V3	V3	V3	
Passive Insulation solution - SS front			MLI60-A144	MLI60-A144	301STEEL	
Passive Insulation solution - SS sides			MLI60-A144	MLI60-A144	301STEEL	
Cryocooler technology			CREARE	CREARE	NONE	
Max thermal lift per cryocooler			150	150	0	
Number of Cryocoolers to use			7	8	0	
Custom Baffles for Prop Mixing			Regular	Regular	Regular	
Net heat flux into propellant tanks	NETHEATFLUX	LEO	6805	1139	82778	w
Net heat flux into propellant tanks	NETHEATFLUX	NRHO / HEO	1304	0		w
Net heat flux into propellant tanks	NETHEATFLUX	LSP	24698			W
	HVAPLOX	214000.00				W*s/kg
Boiloff rate LOX tank		LEO	0.01590	0.00266	0.19341	kg/s
Boiloff rate LOX tank		NRHO / HEO	0.00305	0.00000		kg / s
Boiloff rate LOX tank		LSP	0.05771			kg / s
	HVAPMETH	511000.00				W*s/kg
Boiloff rate LCH4 tank		LEO	0.00666	0.00111	0.08100	kg / s
Boiloff rate LCH4 tank		NRHO / HEO	0.00128	0.00000		kg / s
Boiloff rate LCH4 tank		LSP	0.02417			kg / s

Net Heat Flux Calculations						
Designed area front	EDON/TADE ADDO		63.6	63.6	63.6	
Area side	PRONTAREAPROJ		63.0	1 747 4	4 747 4	m2
Area side	SIDEAREA		1,/4/.4	1,/4/.4	1,/4/.4	mz
Orbit-average front area looking at Sun	OAFRONTSUN	LEO	59%	59%	59%	
Orbit-average side area looking at Sun	OASIDESUN	LEO	0%	0%	0%	
Orbit-average front area looking at Earth	OAFRONTEARTH	LEO	41%	41%	41%	
Orbit-average side area looking at Earth	OASIDEEARTH	LEO	29.5%	29.5%	29.5%	
Orbit-average front area looking at Sun	OAFRONTSUN	NRHO	100%	100%		
Orbit-average front area looking at Sun		LSP	0%	0%	0%	
Orbit-average side area looking at Sun		LSP	50%	50%	50%	
Orbit-average side area looking at Moon		LSP	50%	50%	50%	
Front absorptivity			0.0185	0.0046	0.25	
Front effective emissivity			0.0185	0.0046	0.58	
Side absorptivity			0.0185	0.0046	0.25	
Side effective emissivity			0.0185	0.0046	0.58	
Environmental heat flux reaching exterior tank	ENVHEATFLUX	LEO	7211	1803	77771	W th
Environmental heat flux reaching exterior tank	ENVHEATFLUX	NRHO	1610	403		W th
Environmental heat flux reaching exterior tank	ENVHEATFLUX	LSP	24029			W th
Environmental heat flux reaching tanks	ENVHEATFLUX	LEO	7211	1803	77771	W th
Environmental heat flux reaching tanks	ENVHEATFLUX	NRHO	1610	403		W th
Environmental heat flux reaching tanks	ENVHEATFLUX	LSP	24029			W th
Internal heat flux conducted to tanks	INTHEATFLUX		500	500	500	W th
Solar panel heat flux onto side of tanks	BACKPANELFLUX	LEO	144	36	4507	W th
Solar panel heat flux onto side of tanks	BACKPANELFLUX	NRHO	244	61		W th
Solar panel heat flux onto side of tanks	BACKPANELFLUX	LSP	1219			W th
Power-limited cooling capacity (in orbit)			6322	6322		
Power-limited cooling capacity (on lunar surfac	ce)		1260			
Heat flux removed by CC (in orbit)			-1050	-1200	0	W th
Heat flux removed by CC (on lunar surface)			-1050			W th

Surface Material Description	Lookup name	mass in kg / m2	Abs	Emm
	don't use this			
	BLACK	1	0.99	0.98
No coating, 301 steel	301STEEL	0	0.25	0.58
White Paint	WHITE	1	0.12	0.9
Magnesium Oxide in White paint	MGOWHITE	1	0.09	0.9
AZ Tech Inorganic Low Alpha White Paint	AZTWHITE	1	0.09	0.91
silver backed, used on skylab, space shutle, and hubble	QIOPTIQ	1	0.06	0.83
SOLEC LOMIT	SOLEC	1	0.23	0.17
MLI, 40 layers	ML140	12	0.005	0.005
MLI, 20 layers	MLI20	8	0.006	0.006
MLI, 60 layers	ML160	16	0.004	0.004
MLI60-A138, Johnson (2010)	MLI60-A138			
MLI40-A139, Johnson (2010)	MLI40-A139	6.43	0.0049	0.0049
MLI60-A140, Johnson (2010)	MLI60-A140	6.78	0.0042	0.0042
MLI60-A141, Johnson (2010)	MLI60-A141	6.67	0.0059	0.0059
MLI20-A142Q, Johnson (2010)	MLI20-A142Q	5.79	0.0071	0.0071
MLI60-A143, Johnson (2010)	MLI60-A143	6.66	0.0050	0.0050
MLI60-A144, Johnson (2010)	MLI60-A144	6.47	0.0046	0.0046

Type of Cryocooler	Model var name	Row No.	SPEC MASS	PWR RATIO
units			kg/W(th)	none
no cryocooler used	NONE	2	0	0
generic efficient cryocooler	GENERIC	3	2	20
heavy, inefficient cryocooler	HEAVYGEN	4	6	60
Petach pulse-tube cryocooler	PETACH	5	0.7	15
Creare 150W 90K	CREARE	6	0.4	8

MLI Outer Cover Material Lookup Ta		MLIOUTERLOOKUP		MLIOUTERLOOKUP_ROWS		
Type of MLI Outer Layer	Model var name	Row No.	SPEC MASS	Abs	Em	thickness
units			kg/m2	none	none	m
beta cloth	BETACLOTH	2	0.237	0.45	0.8	0.00002
aluminized beta cloth	ALBETACLOTH	3	0.271	0.37	0.3	0.00002
thin backed teflon	THINBTEFLON	4	0.028	0.1	0.4	0.0000013
thick backed teflon	THICKBTEFLON	5	0.55	0.1	0.85	0.0000254
thin coated and backed teflon	THINCBTEFLON	6	0.11	0.14	0.6	0.000011
thick coated and backed teflon	THICKCBTEFLON	7	0.27	0.14	0.75	0.0000127
thin coated and backed kapton	THINKAPTON	8	0.019	0.41	0.5	0.0000013
thick coated and backed kapton	THICKKAPTON	9	0.19	0.54	0.81	0.0000127
Lookup table name			Excel data range name		Rows lookup range:	
MLI Reflector Material Lookup Table	e		MLIREFLLOOK	UP	MLIREFLLOOKUP_ROWS	
Type of MLI Reflector Material	Model var name	Row No.	SPEC MASS	Abs	Em	thickness
units			kg/m2	none	none	m
thin aluminized kapton	THINALKAPTON	2	0.011	0.14	0.05	0.0000076
thick aluminized kapton	THICKALKAPTON	3	0.19	0.14	0.05	0.000127
thin goldized kapton	GOLDKAPTON	4	0.011	0.3	0.04	0.0000076
thick goldized kapton	GOLDKAPTON	5	0.19	0.3	0.04	0.000127
thin aluminized mylar	ALMYLAR	6	0.007	0.14	0.05	0.0000007
thick aluminized mylar	ALMYLAR	7	0.175	0.14	0.05	0.0175

Dashboard knobs- Performance goals / decisions	Excel cell name	Value			Units	Notes
Required Endurance at NRHO	REGENDINRHO	90			days	Artems III requirement, capability to wait at NRHO for Orion, relax it to compare how a purely-commercial mission might perform
Required Endurance at LSP	REGENOLSP	30			days	Artemis III requirement, cannot be less than this due to choice of NRHO rendezvous & safety requirements if ascent launch windows missed
Starship HLS Payloads staying on Moon	HLSTWAYPAYLOAD	13,152			kg	This can be traded with HLS ascent propeilant margins. Includes all specialized exploration equipment, consumables, rovers, deployable solar arrays - anything that will stay on Moon
Starship HLS Payloads returning to NRHO	HLSPAYLOADMASS	30,000			kg	This can be traded with HLS ascent propellant margins. It includes all specialized hobtation equipment installed on Stanship HLS, the crew and any equipment they have to bring back.
How much deta V from HEO to TUT?	TLIMINUS	900			min -	Set it is 3200 for LEO departure onte: The higher the HEO apoges, the lower this should be. Default an 200 min the rd adoptin it har 4 model, 650 min lot the v2 depot. Lever it further to raise HEO apoges in order to make a mission feasible and/or to increase HLS prig margina, at the cost of having to send maybe more tankers to refue the depot that will travel to HEO. Relating HEO apoges will improve HLS standing propertient margins at the expense of a few more tankers required. It is expected that for supporting refiling to lunar missions, the apoges of the (HEO) highly elliptical ontit will end up being in MEO (Medium Earth Obio).
Dashboard knobs - Technology Choices	Default Variable Names	Value	Value	Value	Propellant Margin LSP - NRHO	27.08%
		For HLS	For Deput	For Tanker	Total Number of Tankers	15
		default name	Suffix: DEP	Suffix: TNK	Construction of the second second	
Starship Version	STARSHIPV	C 1/1	_V3	C VI		Changing this allows us to run the model with V1, V2 or V3 Starship and see how mission feasibility is affected. For Starship specs, see LOOKUP TABLES tab.
Passive Insulation solution - SS front	PASSINSULFRONT	ML80-	ML80	(3035T		This defines the passive insulation strategy for the front of starship (e.g. area above the solar panels) used for calculations.
Passive Insulation solution - SS sides	PASSINGULSIDE	ML80	ML80	(3015T)		This defines the passive insulation strategy for the side of starship (e.g. area under the solar panels). If both MLI and cryocoolers are used, the mass of the MLI structural support system is subtracted.
Radiator design - backside of solar panels	PANELRADIATORS	(Salvoot)	Gawhoth	Regul		"Seetooth" is a design with a small mass penalty where the radiator panel's cross section is like a sawkoch profile, and the sides facing the tank have tow emissivity, whereas the sides looking at space have high emissivity.
MLI Number of Layers - front	MLILAYERSFRONT					
MLI Number of Layers - sides	MULAYERSSIDE					
Insulating / reflective material	MUMAINMATERIAL					
Non-conductive separating material	MLISEPMATERIAL					
Outer shield / aeroshell material	MLIOUTERMATERIAL					
Cryscosiler technology	CRYOCOOLERS	CREARE	CREARE	NONE		This defines whether active cryocociers are used to achieve ZBO or not, selecting cryocociers adds mass to the system, increase power needs == in case of PLS, we have SVMI sigure in NRHO as the design loads to are when creas is on based cannot exceed 50 of the 100km/s. If any cryocociers are used, a fixed mass is added for the network of pipes and manifolds.
Cryo Sizing: Max Thermal Power of Cryocoolers used, per Cryocooler Unit	CRYOPOWER	150	150	0	W(th)	watts of heat removed by cryocooler (cocoling capacity)
Number of Cryocoolers to use	NUMBERCRYOS			0		the number of cryocoolers used. Together with the type of cryocooler, this determines total cooling capacity, total power demand and total additional mass
Dashboard knobs used for stress-	testing the HLS missi	ion				
MLI Degradation factor	MUDEGRADE	4				This factor is multiplied with effective emissivity. It is modeled as an average across the entire passive insulation of the HLS system.
Number of failed cryocoolers	FAILEDCRYOS					Any failures are assumed to occur upon the first startup, and then they remain inactive for the HLS mission.
Dashboard knobs - not used for H	uLC					
Lunar Cargo Starship Payload	CARGOPAYLOADMASS	100.000			Ng	This is used only for calculations of number of tankers required for cargo missions

Backup: NASA GEVS

https://standards.nasa.gov/standard/gsfc/gsfcstd-7000

General Environmental Verification Standard (GEVS) for GSFC Flight Programs and Projects

Replace with your point!! High Level Testing Flow

https://atos.net/wp-content/uploads/2020/10/Atos_Satellite_Testing_An_Introduction.pdf

Replace with your point!! Notional SV Integration and Test

V3 Hybrid (Architecture 023-MCB)

- •V3 HLS and Depot
- MLI
- Cryocoolers
- Vertical solar arrays
- Sawtooth radiators
- Baffles
- Mixing Pump
- 15 tanker flights

V2 Passive (Architecture 026-MB)

• MLI

Baffles

Mixing Pump

• 15 tanker flights

Lunar Ascent Propellant Margin: **14.6%**

V2 Hybrid (Architecture 019-MCB)

- V2 HLS and Depot
- MLI
- Cryocoolers
- Vertical solar arrays
- Sawtooth radiators
- Baffles
- Mixing Pump
- 15 tanker flights

Lunar Ascent Propellant Margin: 16.2%

Aluminized Kapton (22.86 mm) Dacron Netting

Kevlar Fibers (.17 mm)

G-10 Fiberglass and Tank-Welded Steel Tubes (14 mm)

Stainless Steel Tank Wall (38.77 mm)

Propellant

Anodized Aluminum Aeroshell (.5 mm) 6 Ply Keylar 29 Style 710 (.17 mm)

Aluminized Beta Cloth (.2 mm)

60 Alternating Layers Aluminized Kapton (22.86 mm) Dacron Netting

Kevlar Fibers (.17 mm)

G-10 Fiberglass and Tank-Welded Steel Tubes (14 mm)

Stainless Steel Tank Wall (38.77 mm)

Propellant
$_{\gamma}$ KE = mv²/2

Anodized Aluminum Aeroshell (.5 mm)

6 Ply Kevlar 29 Style 710 (.17 mm)

Kevlar Fibers (.17 mm)

Aluminized Beta Cloth (.2 mm)

60 Alternating Layers Aluminized Kapton (22.86 mm) Dacron Netting

Kevlar Fibers (.17 mm)

G-10 Fiberglass and Tank-Welded Steel Tubes (14 mm)

Stainless Steel Tank Wall (38.77 mm)

Propellant