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Quad Chart 

 

Figure 1: Quad Chart
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Technical Paper 

1.1. Executive Summary 

As NASA prepares to embark on extended missions to the Moon and Mars, the development of accurate 

microgravity propellant gauging techniques will be imperative to mission success (Zimmerli, 2007). 

Current mass gauging techniques are unable to reliably track the quantity of remaining cryogenic 

propellant or the rate of boil-off with high accuracy during long duration missions. This necessitates that 

extra propellant is brought to account for the uncertainties. The Professional Association of Research for 

Space Engineering Concepts (PARSEC) proposes Electrical Capacitance to High-resolution Observation 

(ECHO) which adapts Electrical Capacitance Tomography (ECT) to work with a machine learning (ML) 

algorithm to accurately and continuously measure propellant quantities. When implemented, ECHO lines 

the interior of spacecraft propellant tanks with capacitance measuring electrodes. After making 

capacitance measurements between electrode pairs, the ML algorithm can rapidly generate and analyze 

the cross-sectional content of the propellant inside the tank to develop accurate propellant configuration 

renders. 

1.2. Problem Statement 

There are two main challenges to cryogenic propellant mass gauging in microgravity: propellant sloshing 

and boil-off. Sloshing occurs during coasting phases without acceleration, where the propellant is unable 

to settle and holds no consistent form or location (Lee et al., 2018). The propellant’s unpredictable 

movement requires a mass gauging system that measures the entire tank to acquire accurate readings. 

Over time, the cryogenic propellant also experiences boil-off, in which the propellant returns to a gaseous 

state and must be vented due to increasing tank pressure. This process occurs over time, and it is critical 

to track the lost propellant for mission planning. Current microgravity mass gauging techniques often rely 

on bookkeeping, calculations using pressure readings, or settled measurements using intermittent 

acceleration burns (Yendler et al., 2014). Modern mass gauges are also often unable to gauge propellant 

levels with high accuracy and can be ineffective for different tank configurations (Doherty et al., 2010; 

Storey et al., 2023). Future propellant mass gauges require a way to continuously determine the propellant 

quantity, especially for long duration missions.  

1.3. Solution 

The PARSEC team proposes Electrical Capacitance to High-resolution Observation (ECHO), a solution 

capable of continuously gauging propellant quantities in microgravity conditions. ECHO aligns with the 

“Microgravity Mass Tracking of Cryogenics” category in the 2025 Proposal Guidelines for the Human 

Lander Challenge and integrates ECT technology with an ML algorithm (HuLC, 2024). To generate 

cross-sectional images of propellant distribution and determine propellant mass, ECHO utilizes an 

electrode array that lines the interior of the tank and takes continuous capacitance measurements of the 

tank’s contents. The ML algorithm then uses capacitance measurements to reconstruct a 2D cross-

sectional representation of the internal propellant and determines the propellant configuration. After 

interpolating between stacked cross-sections throughout the tank, a propellant mass estimate can be 

inferred. 

1.4. Changes from Proposal 

Since the initial proposal, the PARSEC team has determined the use of Linear Back Projection (LBP) to 

be redundant and has made several changes to the testing setup (Wanta et al., 2024). Specifically, since 

the ML algorithm is capable of reconstructing cross-sectional images using raw capacitance data, the LBP 

algorithm has been removed from the solution. Through a trade study (Table 5), PARSEC decided to 

prioritize testing efficiency and proceeded to test the system with air rather than oil. Subsequently, time 

constraints prevented the use of cryogenic liquids during testing. Despite this limitation, simulations were 

conducted to continue developing the algorithm. Additionally, the timeline and cost matrix have been 
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modified to account for a longer development process due to the project’s low TRL, including more 

accurate material cost estimates. 

1.5. Innovation 

Traditional approaches to ECT reconstruction involve using algorithms such as LBP or the Landweber 

Iteration to solve ECT’s ill-posed inverse problem. The soft-field nature of ECT comes from the limited 

amount of data each electrode scan can provide, which leads to low-resolution or inaccurate 

reconstructions (York, 2001). Algorithms like LBP and Landweber do well to mitigate the issues caused 

by this problem. However, these algorithms are still too inaccurate, slow, or resource intensive to be 

widely adopted in space applications (Sun et al., 2021; Zheng et al., 2018). ECHO aims to replace the 

need for these algorithms by using an ML model to rapidly interpret relationships between the 

measurement data and the real cross-section in the tank for fast and accurate cross-sectional 

reconstructions. 

1.5.1.  Machine Learning Architecture 

The ECHO algorithm takes an input of a capacitance measurement received from scanning electrodes, 

and outputs a reconstructed image. ECHO’s algorithm is based on a Conditional Generative Adversarial 

Network (CGAN), which is typically comprised of two smaller ML components, a “generator” and a 

“discriminator” (Mirza & Osindero, 2014). ECHO’s architecture was aimed at CGANs due to the results 

of a trade study conducted (Table 6). During the model’s training, a “real cross-section” is generated, 

which serves as a ground truth for training. This cross-section undergoes an electrode scanning 

simulation, which is intended to mimic the electrode scans of a physical system. A 15-electrode setup, 

like the one the current model of the ECHO system is based on, will generate 105 unique measurements 

after skipping electrode pairs that have already been scanned. It should be noted that this scanning 

algorithm is not completely accurate to an ECT scan, although it is meant to mimic one. Information from 

this scan is passed to a diagonalization algorithm, which rotates the 105 values in a counterclockwise 

fashion, resulting in a diagonalized square capacitance matrix with a size of 105x105 pixels. This rotation 

invariance technique is utilized to ensure that the ML algorithm functions, even if the scanning pattern is 

altered to start with a different electrode than initially trained with (Deabes & Abdel-Hakim, 2024). The 

generator in ECHO’s architecture receives the capacitance matrix and attempts to reconstruct a cross-

section that resembles the original image. The reconstructed cross-section and original cross-section are 

then passed to the discriminator, which is responsible for assigning a real or reconstruction probability 

value to each image. This confidence value is based on which image the discriminator believes is the real 

image, and which is the reconstructed image. After these values are assigned, they are passed back to the 

generator. As the generator is incentivized to make the most realistic images possible, these scores help 

guide the algorithm. This is visually displayed in Figure 2, which shows the flow of data within the 

algorithm’s training cycle.  
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Figure 2: ECHO Algorithm Training Flowchart 

1.5.2.  Machine Learning Overview 

Figure 3 displays the four main steps that the ECHO algorithm takes to gather cross-sectional data: user 

input, ground truth of the input, capacitance matrix, and image reconstruction. The leftmost plot contains 

a dynamic input of objects in the sensing area, and in the current simulation, two circles are present. In a 

spacecraft, this may represent two spheres of floating fuel, bisected into a two-dimensional plane. The 

“Input” image is then down-sampled into a 64x64 quality map, labeled “Ground Truth.” Then, a scanning 

algorithm simulates the electrode scanning pattern across the sensing area, which begins to build the 

capacitance data plot.  

Figure 3: ECHO Two-Circle Demonstration 
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This specific simulation uses a 15-electrode configuration to build the capacitance matrix, which contains 

105 unique values. The diagonalized capacitance matrix is fed through the ECHO algorithm, which 

returns the attempted reconstruction labeled “Reconstruction.” In this case, the ECHO algorithm’s attempt 

to reconstruct the cross-section has achieved an image correlation of 95.82%, and a mass error of 0.84%. 

Figure 4 shows an ECHO model with values IC and ME, which correspond to image correlation and 

mean error, respectively. The original image, shown on the left, is passed through the same scanning and 

diagonalization method described previously. The capacitance matrix is similarly passed through the 

ECHO algorithm, which attempts to reconstruct the original cross-section based solely on the capacitance 

matrix. ECHO’s reconstructed image, displayed on the right, has IC and ME calculations attached to it, 

which is determined by overlaying the ground truth and reconstruction plots. In this example, the IC is 

97.92% and the ME is 1.24%. 

 

   

Figure 4: ECHO Four-Circle Demonstration 

 

Currently, in a simulated environment with simplified training parameters, the ECHO algorithm, trained 

on 10,000 sample cross-sections over 3,500 epochs (training iterations), achieves an average of 94.4% 

±2.8% image reconstruction correlation, 2.2% ±1.1% mass error, reconstruction speed of 20 ±10 

milliseconds, and an image resolution of 64x64 pixels. When tested on objects the model has not been 

trained on, like squares and circles of larger or smaller radii than in the initial training and testing sets, the 

model achieved an average of 90.1% ±1% image reconstruction correlation, and an average mass error of 

6.8% ±1.4%. These values were calculated at a 99% confidence threshold. It should be noted that the 

image correlation value is calculated by comparing every pixel in both the original and reconstructed 

images. Mass error is based only on the sum of the brightest pixels in the images. The reconstruction 

speed depends on the specifications of the computer running the algorithm. The measurements above 

were recorded from a CUDA® enabled NVIDIA® GeForce RTX™ 4060 Ti GPU. Additional benchmarks 

were performed on an 11th Gen Intel® Core™ i7-11800H at 50 ±20 milliseconds. Finally, these values 

were calculated from simplified training data instead of simulations of the testing setup.  

1.5.3.  Analysis 

Simulation of the ECHO sensor setup was carried out using ANSYS® Maxwell®. While initially a method 

for validating sensor data, Finite Element Analysis (FEA) has become a key component in gathering 

simulated measurements for training ML and improving the accuracy of the ECHO algorithm. Several 
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ANSYS® products were tested, and Maxwell® was chosen for its effective electrostatic solver that quickly 

computes capacitance. After carbon fiber nylon mix cross-sections are inserted into an air-filled sensor in 

Maxwell® (Figure 5), the capacitance between all unique electrode pairs can be gathered, the data is saved 

in a table, and the measurements are repeated with the cross-section in a new location. 

 

Figure 5: ANSYS Maxwell Simulation Setup 

 

The simulated capacitance measurements are then processed by a MATLAB® code to be converted into 

impedance values and compiled into the training dataset. Each measurement scenario is labeled according 

to a naming scheme comprised of the position and size of the cross-section inserts, and then the algorithm 

can be used for data training.  

1.6. Future Advancements 

ECHO is currently in the early stages of Phase B in the NASA Systems Engineering Lifecycle and is 

developing the preliminary design for a full-scale model. To advance toward a fully functional system, 

several critical milestones must be met, the first being an improved design of the amplifying analog 

circuit as well as a minimally invasive sensor installation. In the meantime, resources for more realistic 

experiment conditions should be sought out. This includes, but is not limited to, physical tests under 

different pressure, temperature, density, area, permittivity, and number of electrodes. Together with high 

fidelity simulations, the ECHO algorithm will be trained under a much larger and more diverse dataset 

which ensures the system's performance under all conditions. Lastly, ECHO will iterate towards a domed 

sensor configuration. The three-dimensional system will be developed that can interpolate results from 

layered two-dimensional reconstructions into a full volumetric reconstruction of the propellant within the 

tank.  

1.6.1.  Electrode Integration 

One primary objective of future iteration of the sensors is to mitigate any protrusions into the tank for 

wiring purposes. A solution may involve integrating ECHO directly into the walls of the tank. By 

manufacturing the tanks in such a way that the ECHO system is built into the walls of the tank, 

penetrative wiring could be avoided completely. In the event that integrating ECHO directly into the tank 

becomes infeasible, the use of a Flexible Printed Circuit Board (FPCB) and a single feedthrough for wire 

routing will remain a practical and low-risk solution. Additionally, electrode sizing plays a critical role in 

system performance. An ideal shape or size of electrode has yet to be determined, and future work will 

involve optimizing electrode dimensions to maximize system accuracy. 

1.6.2.  Domed Geometries 

Future testing will involve demonstrating ECHO’s capability to accurately gauge mass within domed 

geometries, and testing will be required to adapt the ML algorithm to this geometry. Specifically, the 

system utilizes a general algorithm that is tailored for individual tank designs. To adapt ECHO for a 
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curved geometry, ECHO will be trained with datasets including domed geometries by generating training 

data with known cross-sections and validating the algorithm’s accuracy using physical tests. 

1.6.3.  Relevant Environment Testing 

The current system is assessed to be between a TRL 3 and TRL 4, as the testing apparatus still requires 

minor improvements to validate core functionalities. One key consideration is the availability of training 

data representative of microgravity environments, which would place future iterations at a TRL 6. 

Currently, testing has been conducted under standard Earth gravity conditions. While these datasets 

provide a strong foundation for algorithm development, they may not fully capture fluid behavior, 

sloshing effects, and sensor response under reduced gravity. To address this, future work will explore 

physics-informed modeling and testing in simulated environments.  

Further research will also focus on enhancing the ML algorithm’s ability to account for sensor anomalies 

or failures. These improvements will be validated through targeted cryogenic testing to ensure system 

reliability under the desired operating conditions.  

1.7. Verification 

Through trade studies and short proposals, the potential effectiveness of several microgravity mass 

gauging techniques were compared. During the trade studies, emphasis was placed on feasibility, 

innovation, and current research (Table 4). ECHO was selected due to the relatively high accuracy of 

ECT, the relevant application of ECT technologies in tracking fluid flow, the ability to make 

measurements without acceleration, and the ability to innovate on current designs using ML. 

1.8. Validation 

Through analysis and preliminary testing, the team evaluated the efficacy of ECHO in an effort to 

promote the design of an accurate mass gauging system. Trade studies were conducted to determine what 

testing fluids (Table 5) and type of ML algorithm (Table 6) would be used. After further research, the 

team moved to begin training a basic version of the ML algorithm using an idealized data set and 

ANSYS® Maxwell® simulations to validate the testing data. 

To validate ECHO’s machine learning algorithm, a test apparatus was designed and built (Figure 6). The 

testing apparatus consists of a cryogenic dewar with an interior lined by a 15-electrode array on a 

polyimide FPCB. A custom lid was designed with a swappable mount for suspending various shapes of 

known cross-sections inside of the dewar. The lid is 3D-printed from polyamide carbon fiber filament to 

withstand cryogenic temperatures (Hohe et al., 2020). A connector on this FPCB protrudes out from the 

top of the dewar and is used to connect the electrodes to a CD4067 analog demultiplexer, which then 

completes the electrode connection to a DAQ through an opening in the lid. The DAQ used is a National 

Instruments USB-6421 with additional supporting circuitry to reduce stray capacitance. The DAQ 

interfaces with a Python script that processes the data and runs it through the ML algorithm. 
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Figure 6: Test Apparatus Section View (Left) and Complete Setup (Right) 

 

During initial testing, environmental and system noise prevented accurate results from being obtained 

with the testing apparatus. To mitigate these effects, a Butterworth bandpass filter and a Gaussian filter 

were implemented to reduce noise and clean up the received data. Hundreds of air tests were then 

conducted with the first three cross-sectional inserts (Figure 7). 

 

 

Figure 7: Cross-Section Inserts 

During testing, it was noted that despite the cleaned data from the filters, the CGAN based ML algorithm 

inaccurately reconstructed the image based on the capacitance matrices (Figure 8). When the ML was fed 

an expected 105x105 dataset made up of idealized data to generate a circle in the middle of the 

“Generated Phantom” a diagonalized string of distorted shapes in the top right with a stray oblong line in 

the bottom left was generated. This demonstrated that refinement of both the algorithm and training 

dataset is necessary because the ML model likely drifted in training, making connections between the 

diagonal datasets of the capacitance matrix and diagonal/stretched shapes. With further refinement and 

improvements to data representation, by means of introducing noise into the training datasets to simulate 

real world conditions, the ML model’s robustness to environmental noise is expected to improve. These 

enhancements are anticipated to enable accurate and realizable image reconstruction during both testing 

and real-world implementation. 
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Figure 8: Idealized Circle Reconstruction 

 

1.9.  Risks 

To analyze and mitigate any risks posed by the ECHO system, a risk management sheet and matrix were 

developed (Table 1). The risk sheet compiles 13 relevant risks to determine likelihood, consequences, and 

to evaluate mitigation plans. This analysis identified four critical risks, which relate to capacitor sensor 

failure, thermal insulation, acceleration inaccuracies, and communication interruptions. 

Table 1: ECHO Risks Matrix 

 

L
IK

E
L

IH
O

O
D

 

5     1     

4   6 3, 4 2   

3     5, 9     

2 13 11 7     

1     10 8, 12   

   1 2 3 4 5 

    CONSEQUENCES 
 

Capacitor sensor failure (Risk 1) is when the electrodes return incorrect capacitance measurements, 

making the results inaccurate. To prevent this, mitigation plans could include increasing both electrode 

thermal insulation and reinforcing electrode connections to the tank walls. However, the likelihood of this 

occurring is unknown without proper testing results. The current plan is to watch for failure and modify 

the mitigation plan with more data. 

Thermal insulation failure (Risk 2) could arise when the electrodes are directly exposed to cryogenic 

propellant in the tank. The current design incorporates an insulation cylindrical barrier between the 

electrodes and the tank wall; however, validation of this design will need to be conducted through 

experimental testing under cryogenic conditions. In addition to experimentation, further research 

including thermal modeling and simulation are needed to determine the reliability of the electrodes over 

extended time intervals. 

Significant acceleration (Risk 3) can induce intense periods of propellant sloshing. Rapid sloshing poses a 

challenge to measurement accuracy if the propellant moves faster than ECHO’s sampling rate, or if 

propellant resides in a region of the tank with poor accuracy. To address this, two solutions could be to 
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optimize ECHO’s measurement rate with experimental data, and to increase the number of electrodes in 

those regions. Future work for these solutions includes dynamic testing, such as vibration tests, to 

evaluate and enhance sensor performance under simulated launch and in-flight conditions.  

Communication loss (Risk 4) between the ECHO system, the DAQ unit, or the spacecraft inhibits 

propellant measurements. To mitigate the risk of communication loss, one solution includes securing all 

data and power connections with robust harness design. To fully mitigate this risk, comprehensive 

simulations and testing the full integrated system will be required during later stages of development. 

1.10.  Full-Scale Implementation 

While the current ECHO testing apparatus consists of a rudimentary ML algorithm and a single row of 15 

electrodes, any full-scale implemented system will have to utilize tens or hundreds of rows, and an ML 

algorithm trained on larger and more diverse datasets. The increase in electrodes is necessary to facilitate 

an accurate three-dimensional reconstruction. On an HLS vehicle, such as SpaceX’s Starship, the size of 

the tank means that the maximum distance between two electrodes at a given cross section is 9 meters 

(SpaceX, 2025). The current ECHO setup, with a 6-inch diameter, has a sampling rate of 15,000 samples 

per second, an excitation frequency of 2kHz, and an applied electrode voltage of 1V. To combat increased 

distance, scaling up the ECHO architecture will require a notable increase in all these categories. 

1.11.  Budget 

Utilizing the NASA Project Cost Estimating Capability (PCEC), an estimate for the costs associated with 

implementing ECHO on SpaceX’s Starship were obtained using a First-Pound Cost (FPC) Cost 

Estimating Relationship (CER). An FPC CER is an equation that generates a cost estimate based on 

system weight and is derived through regression analysis using the costs of similar existing systems. The 

CER used for this estimate is based on the costs of existing instrumentation subsystems on liquid stage 

launch vehicles. An input of 230 kg (507 lbm) was used, assuming the ECT system is implemented on 

Starship’s main liquid oxygen and methane tanks with aluminum electrodes that are 10 microns thick and 

a polyimide insulation layer that is 0.2 mm thick (Storey, 2023). Table 2 shows the cost output of the 

CER and their inflation-adjusted amounts. 

Table 2: PCEC Cost Outputs (Millions of Dollars) 

Cost Phase FY2015 $M FY2026 $M 

Non-Recurring  29.2   36.5  

Design & Development  23.5   29.4  

System Test Hardware  5.7   7.1  

Flight Unit (Recurring)  4.4   5.5  

TOTAL  33.6   42.0  

The non-recurring costs were inflation-adjusted and converted to an annuity distributed across the project 

life, assuming a 2.6% yearly interest rate. These costs were included along with a 50% manufacturing 

margin in the total direct costs of the project. Personnel salaries are also included in the overall cost 

estimate. Travel costs are neglected assuming personnel will be living in Huntsville, Alabama, and tests 

can be conducted at NASA’s Marshall Space Flight Center. Table 3 contains a breakdown of the current 

cost estimate for the project, excluding any changes that may occur to the cost of launching the mission. 
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Table 3: Full Budget Breakdown (Thousands of Dollars) 

Mission Phase  Phase C   Phase C   Phase D   Phase D  
 

Year  FY 1 (2026)   FY2 (2027)   FY3 (2028)   FY4 (2029)   Total ($K)  

PERSONNEL 

Science Personnel 80 82 84 86 332 

Engineering Personnel 320 328 337 345 1,330 

Technicians 60 62 63 65 249 

Administration Personnel 120 123 126 129 499 

Project Management 240 246 252 259 997 

Total Salaries 820 841 863 884 3,408 

Total ERE 229 235 241 247 951 

TOTAL PERSONNEL 1,049 1,076 1,103 1,131 4,359 

DIRECT COSTS 

System Cost (from CER) 10,500 10,773 11,046 11,319 43,638 

Manufacturing Margin (50%) 5,250 5,387 5,523 5,660 21,819 

Total Direct Costs 15,750 16,160 16,569 16,979 65,457 

FINAL COST CALCULATIONS 

Total Projected Cost 16,799 17,236 17,672 18,109 69,816 

Total Cost Margin (30%) 5,040 5,171 5,302 5,433 20,945 

Total Project Cost 21,839 22,406 22,974 23,542 90,761 
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1.12.  Project Timeline 

Figure 9: ECHO Development Timeline 

 

The phases of ECHO’s development have been laid out into a five-year timeline (Figure 9) with a twelve-

month margin. Major milestones were based on the NASA Systems Engineering Handbook (Hirshorn, 

2007). The blue bars represent major tasks, the orange diamonds represent major checkpoints, and the 

green bars represent the margin for each phase of the development. 

Phase B focuses on the continued preliminary design and further technology, including small-scale flight 

testing and cryogenic tests. With ECHO’s current testing configuration, it is likely that cryogenic ground 

tests could be conducted in roughly three to four months. The testing configuration can also be modified 

for a simple flight test to gather real-time data in a changing environment. These flight tests would ideally 

be conducted with a drop tower or onboard an aircraft with a parabolic trajectory. Phase B will then end 

with a Preliminary Design Review and achieve a TRL of 6. 

Phase C focuses on final design and fabrication of the system for the chosen spacecraft. Once the 

spacecraft is determined, the electrodes can be designed around the specified propellant tank. Following 

the Critical Design Review, electrode manufacturing can begin, and the ECHO algorithm can be trained 

using simulated data. Once the electrodes have been produced and the algorithm has been trained, a 

System Integration Review can be conducted, and ECHO can be integrated with the rest of the spacecraft.  
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Phase D focuses on the system assembly, integration, and testing in preparation for full-scale flight testing 

and operations. System confidence will be ensured through continued testing and calibration of the ECHO 

algorithm for the designated tank. Phase D will also include environmental and vibrations testing to 

ensure a successful integration. Then the Operational Readiness Review will be conducted to approve 

ECHO for use on space missions, achieving a TRL of 7. 

1.13.  Conclusion 

The team has spent the past year developing ECHO through intensive research, trade studies, and testing, 

resulting in a working prototype featuring a 1x15 electrode array with an ML image reconstruction 

algorithm. The system operates by measuring capacitance between distinct electrode pairs by sending and 

receiving AC voltages through a DAQ-Demultiplexer-Electrode circuit. These measurements are 

recorded into a 1x105 array which the ECHO algorithm converts into a capacitance matrix to reconstruct 

a cross section of the tank contents. Testing has demonstrated that ECHO is a promising solution to mass 

gauging in microgravity environments through a series of ground-based experiments and simulations. In 

the future, the team plans to continue development of ECHO beyond the HuLC forum. Next steps include 

developing a new ML model, trained on realistic data sets, and adding more rows of electrodes to the 

testing setup to support three dimensional measurements.  
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Appendix 

 

Table 4: Microgravity Mass-Gauging Methods Trade Study 

Criteria Weight Scale 
Dorthy 

System 

X-Ray 

Tomog

raphy 

Radio 

Frequency 

Mass 

Gauging 

Modal 

Gauging 

Electrical 

Capacitance 

Tomography 

Thermal 

Tomograph

y 

Bladder 

Testability 15% 3-0. 0 1.5 3 3 3 3 3 

Difficulty (In our 

favor) 
15% 3-0. 0 2 2.5 2.5 2 3 1 

Interest/Preference 10% 3-0. 3 2 3 2 3 2 2.5 

Innovation 20% 3-0. 3 2.5 2.5 2.5 2.5 1.5 3 

Past Knowledge 5% 3-0. 0 1 2 1 1 1.5 1 

Feasibility of 

Implementation 
20% 3-0. 0 1.5 1.5 2.5 2.5 2 1 

Available 

Information 
15% 3-0. 1 2.5 2.5 3 3 3 1 

Weighted Total % 100%  35% 65% 80% 84% 85% 78% 62% 

 

Table 5: Testing Fluids Trade Study 

Criteria Weight Scale 
Liquid 

Nitrogen 

Vegetable 

Oil 

LN2 + 

Oil 

LN2 + 

Air 
Air Water 

Time 

Commitment 
30% 3-0. 2 2.5 1 1.5 3 2 

Accuracy 30% 3-0. 3 2 3 3 2 1 

Hazard Level 25% 3-0. 1.5 3 1.5 1.5 3 3 

Interest 15% 3-0. 3 2 2.5 3 1.5 1 

Weighted Total 

% 
100%   78% 80% 65% 73% 83% 60% 

 

Table 6: Machine Learning Algorithms Trade Study 

 

 

Scores

Criteria Weight Scale GCNN CGAN* ADMM* FFNN SVM U-Net
Hopfield 

Networks
SegNet* CN Autoencoder L-ELM

Existing Research 10% 1-3 3 3 2 1.5 2.5 3 2.5 3 1.5 3 1.5
Relevance/Implementability 10% 1-3 3 2.5 2.5 1.5 2.5 2.5 2 3 2 2 2.5

Accuracy/Performance 20% 1-3 2 3 2.5 1 1.5 2 1 2 1.5 1.5 1.5
Timeframe 25% 1-3 3 2 2 1 2.5 1.5 1 3 3 1 2.5

Difficulty (In our favor) 15% 1-3 2 2 2.5 1 2.5 2 1 2 2.5 1 2
Interest/ Preference 5% 1-3 3 3 2 2 2.5 3 1 3 1 2 1.5

Innovation 15% 1-3 1.5 2.5 2.5 3 2 2.5 3 1.5 1.5 1.5 2.5
Weighted Total % 100% 81% 83% 77% 48% 74% 72% 52% 81% 68% 51% 69%

ML Trade Study Trades
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Table 7: ECHO Risks Matrix 

 

ID Risk Name Description 
Related 
Systems 

L C Method Plan 

1 
Capacitor 

Sensor Error 

Capacitors sensors transmits 
incorrect data leading to 
potentially inaccurate mass 
gauging data. 

Electrodes 5 3 W 
Accurate calibration 
corrects this issue 

2 

Thermal 
Insulation 

Failure 

If the parts of ECHO that are 
not designed to come in 
contact with the tank walls do 
come in contact with the 
cryogenic tank walls, or if the 
insulation for the intended 
parts fail, it may cause damage 
to the system.  

Tank 
Insulation 

4 4 R 

Research different 
materials to use as 
insulation around tank 
prevents systems from 
touching the tank. 

3 
Inaccuracy due 
to Acceleration 

In periods of acceleration, the 
fluid-mass, if small enough, may 
concentrate in a region without 
enough sensors to gather data. 
This may cause errors in the 
reconstruction of data or even 
provide false readings. 

ECHO, 
Propulsion

, HLS 

4 3 M 

Place additional arrays 
of sensors in issue-
prone areas i.e. the 
ends of the tank.  

4 
Communication 

Interruption  

During communication from 
the sensors, to the DAQ to the 
computer, any breakdown of 
communication could lead to 
no or incorrect data being 
transferred.  

DAQ 4 3 M 

Ensure connections are 
secured before and 
after test procedure.  

5 ECHO Mass 

To accurately measure the mass 
of the full HLS propellant tanks, 
the mass of the ECHO system 
may exceed the critical point of 
mass where the inconvenience 
associated with mass exceed 
the convenience of having the 
measurement system. 

ECHO, 
Propulsion

, HLS 

3 3 M 

Reduce ECHO system 
mass and size without 
reducing the system's 
accuracy. 

6 ECHO Volume 

The amount of volume the ECHO 
system takes up in the 
propellant tank will reduce the 
amount of propellant HLS could 
carry, reducing mission 
efficiency. 

ECHO, 
Propulsion

, GNC 

4 2 A 

The volume of the ECHO 
system could be 
reduced for efficiency, 
but few mitigation 
options are available. 
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7 
Power 

Consumption 

The power it takes to run the 
ECHO system on the Starship 
scale exceeds the allotted 
power for the ECHO system by 
the HLS EPS 

EPS, 
ECHO 

2 3 W 

ECHO would be 
designed with a set 
power budget, 
comparisons would be 
needed to determine if 
the electrical 
requirement would that 
given by HLS. 

8 

Computer 
Memory/Process

ing Failure 

Computer is unable to process 
information or handle new tasks 
until memory is freed. This 
would lead to incomplete data 
sets and incomplete mass 
gauging information. 

ECHO, 
Power 1 4 W 

Ensure hard disks have 
enough space to record 
all data with extra 
space for redundancy. 

9 

Radiation 
Environment 

Affecting Data 

Computing and DAQ system are 
exposed to radiation 
environment leaving the 
potential for corruption of data 
by interacting with charges in 
memory systems. 

ECHO, 
Starship 

3 3 R 

Research the average 
radiation environment 
in cislunar space and 
different shielding 
materials 

10 
Premature Test 

Failure 

During testing, if ECHO's 
function ends prematurely, i.e.. 
before the end of the test 
period, it would lead to 
incomplete data sets and thus 
potentially incomplete mass 
gauging information. 

ECHO, 
Power 

1 3 W 

Recalibrate testing 
apparatus, ensure all 
components are 
functioning, and re-run 
the test 

11 
Immobilization 
By Orientation  

In case of the issue of sensors 
slightly coming detached or 
even completely detached, it 
may impact the quality of 
measurements. 

Electrodes 2 2 W 

Observe during testing 
and adjust if issue 
becomes prevalent. If it 
does, adjust adhesives 
or placement to ensure 
sensors do not become 
dislodged. 

12 

Computing 
System 

Protection 
Failure 

If the ECHO system's DAQ or 
computer is not properly 
protected to potential violent 
forces, it could cause a failure 
of the system overall.  

ECHO, 
DAQ 

1 4 A 

Ensure all parts are 
away from any hazards 
and maintain a careful 
posture when moving 
apparatus. 

13 

Software 
Module Data 

Error 

Error with data from different 
modules, whether that be an 
error passing, casting, or 
modifying data. 

DAQ 2 1 M  

Calibrate and test 
program before full 
testing to ensure 
little/no error. 
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Figure 10: Extra Test 1 

 

 

Figure 11: Extra Test 2 

 

 

Figure 12: Extra Test 3 
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Figure 13: Extra Test 4 

 

 

Figure 14: Extra Test 5 

 

 

Figure 15: Extra Test 6 
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Figure 16: Extra Test 7 

 

 

Figure 17: HLS Starship Progression 


