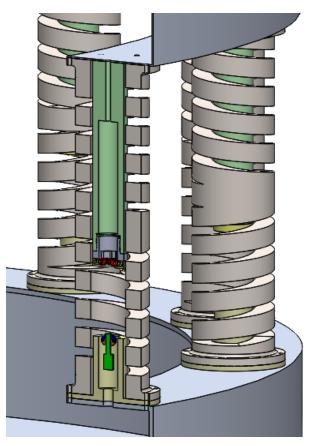

THERMOSPRING


Thermal Exchange Reduction Mechanism Using Optimized SPRING

California State Polytechnic University, Pomona

Caroline Herrera, Charles Johnson, Dominique Munoz, Osheen Gupta, Nathaniel Antonio Advisor: Dr. Frank Chandler

AGENDA

1. Executive Summary & Challenge

- •1.1 Executive Summary
- •1.2 Specific Cryogenic Challenge

2. Proposed Solution

- •2.1 Overall Summary
- •2.2 Spring Design
- •2.3 Push-Push Lock
- •2.4 Thermal Resistance Calculations and Results
- •2.5 Thermal Desktop Analysis

3. Path to Flight

- •3.1 Project Timeline
- •3.2 Budget Assessment

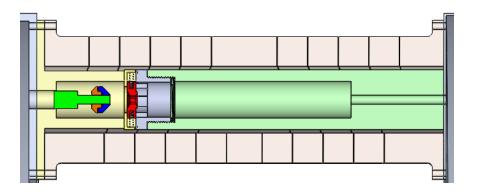
4. Conclusion

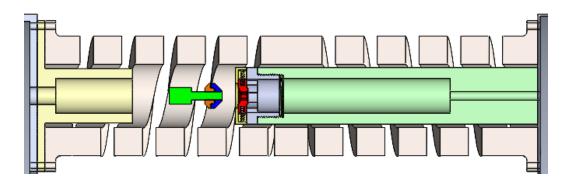
•4.1 Conclusion and Future Work

THE THERMOSPRING - DESIGN SUMMARY

Specific cryogenic challenge: advanced structural supports

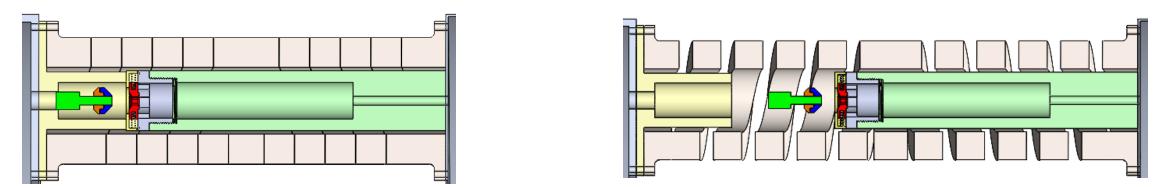
The system has


- 1. 14 springs
 - Each spring contains two inner concentric cylinders [28 total] that separate during expansion of the spring


2. A Push-Push lock mechanism that prevents premature spring expansion during high gravities during launch The system can

- Support the weight of the cryogenic tank on:
 - Earth at 6.1094E+06 N
 - $_{\odot}~$ Moon at 9.6234E+05 N
- Increase thermal efficiency by 99.76%

COMPRESSED VS EXPANDED SPRING

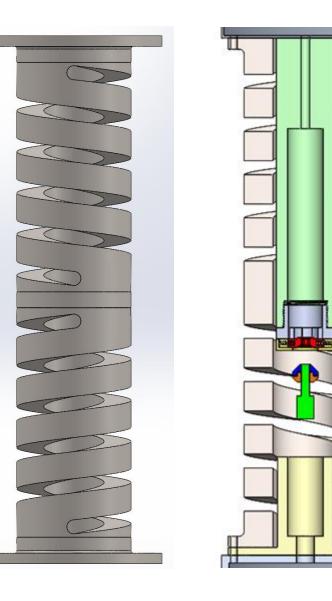


On the Earth (9.81 m/s²) supporting 6.1094E+06 N

On the moon (1.625 m/s²) supporting 9.6234E+05 N

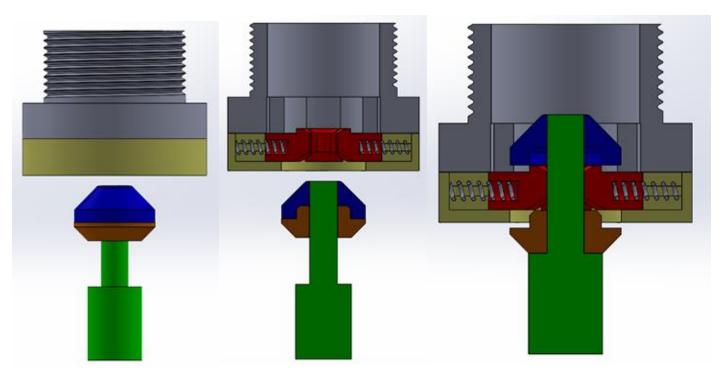
- Due to the weight differences, the spring will expand automatically as it transitions from earth to the moon as there is now less weight compressing the spring
- Elimination of conductive heat transfer through inner cylinders in orbit and in low gravity environments [the moon] by using a gravity dependent expansion and compression system

THERMOSPRING


- Inner cylinders provide structural stability and prevent lateral movement
- Increased thermal resistance, therefore reduced heat leak, by increasing the length heat must travel through in the spring wire R=L/KA
- Mostly mechanical system equating to rapid technological substitution

THERMOSPRING - SPRING DESIGN

- Square wire profile and opposing twists.
- Integrated flanges
- Machined spring design improves manufacturability and reduces part count


$$k_{spring} = \frac{\Delta F * FOS}{\Delta x_{max}}$$
$$b_{wire} = \left(\frac{k_{spring} * 44.5 * r_{spring}^3 * n_{coils}}{G_{titanium}}\right)^{1/4}$$

THE THERMOSPRING: PUSH-PUSH LOCK

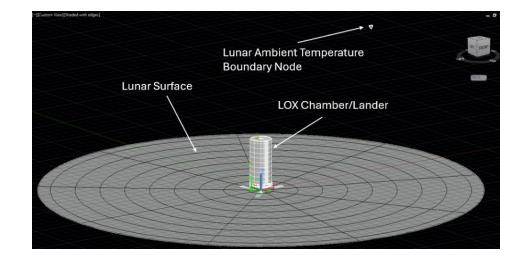
- Provides positive control over system
- Self-aligning
- Able to integrate with jack screws and linear actuators

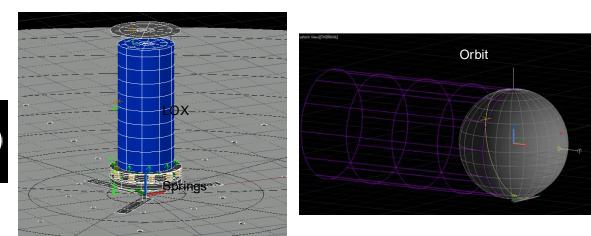
THERMAL RESISTANCE CALCULATIONS

CASE 1	CASE 2	CASE 3	
Without THERMOSPRING	With compressed THERMOSPRING	With expanded THERMOSPRING	
Flange to Flange	Flange to Compressed Spring	Flange to Expanded Spring	
	System to Flange	System to Flange	
Applicable Environment	Applicable Environment This	Applicable Environment This	
This System Encounters:	System Encounters:	System Encounters:	
On Earth, in orbit, and on	On Earth	In orbit, on the moon, or any low	
the moon		gravity situation.	
R_flange = 0.0396 K/W	$R_compressed = 1.5443 \text{ K/W}$	R_expanded_spring = 16.75 K/W	
q_flange=1930 W	$q_compressed = 49.5189 W$	q_expanded_spring = 4.57 W	

THERMAL RESISTANCE CALCULATIONS

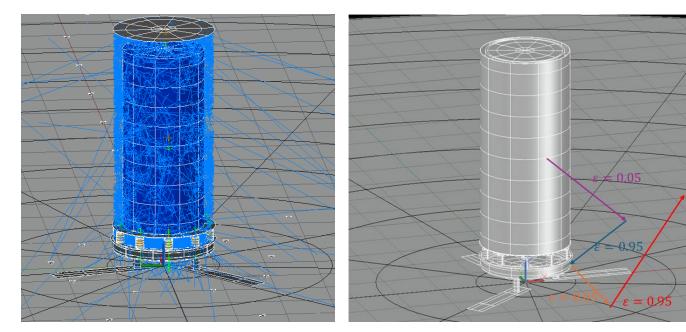
	Without THERMOSPRING		With THERMOSPRING	
	Rth (K/W)	Heat Rate Q=∆T/Rth (W)	Rth (K/W)	Heat Rate Q=∆T/Rth (W)
Pre-Launch (1-15 g, atmospheric)	R = 0.0396 K/W	Q=1930 W	R = 1.5443 K/W	Q = 49.5189 W
In Orbit (0 g, vacuum)	R = 0.0396 K/W	Q=1930 W	R = 16.75 K/W	Q=4.57 W
On the Moon (0.17 g, vacuum)	R = 0.0396 K/W	Q=1930 W	R = 16.75 K/W	Q=4.57 W


THERMAL SIMULATION


- Radiation and Conduction are only methods
 of heat transfer
- Surface emissivity used are from polished metals
- Solve estimated thermal resistances from resistance equations and Spacecraft Thermal Control Handbook Vol.1.

$$R_{cond} = \frac{L}{KA} R_{rad} = \frac{1}{h_r A} \text{ where } h_r = \varepsilon \sigma (T_s + T_{env}) (T_s^2 + T_{env}^2)$$

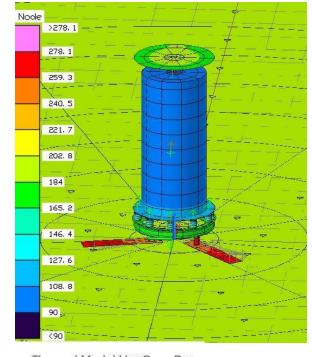
 Uses moon orbital simulation keeping the LOX lander around the same bottom portion to mimic the solar flux and angle of incident radiation

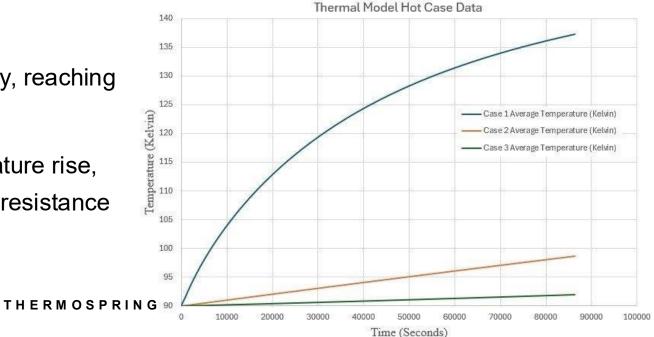

ly Pomona

RADIATION CONDUCTORS - MONTE CARLO METHOD

- Radiation conductors solved in the simulation by the monte carlo method.
- Radks ray tracing are shown by the blue lines and are plotted for 1 ray per node in the model, while the simulation runs at 25,000 rays per node, until the ray thermal energy falls below a threshold value.
- Far right is an example calculation for deposited thermal energy dependent on the surface emissivity which will give the gray body factor.

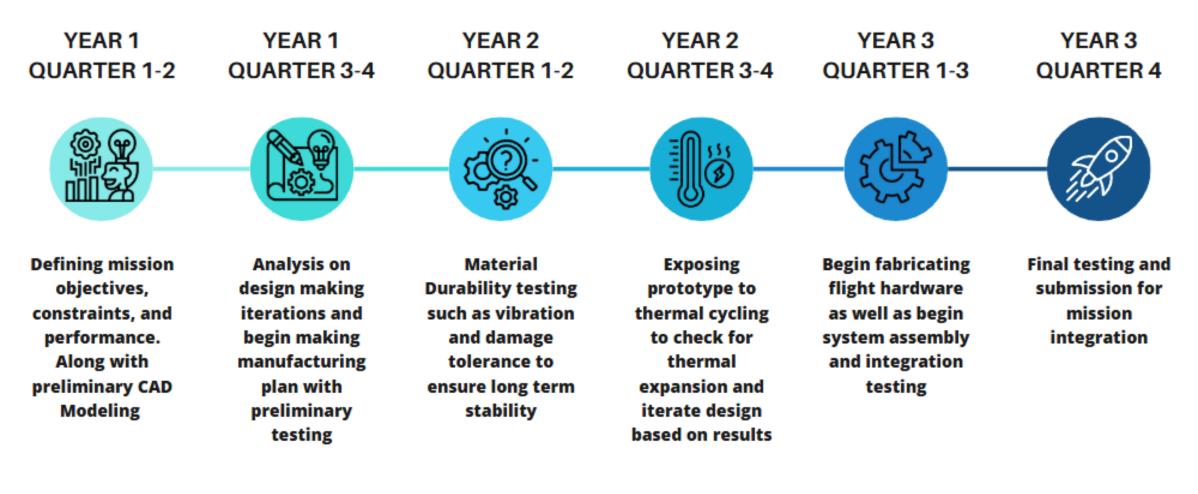
$$Radk = (G_{rad})_{ij} = \varepsilon_i A_i B_{ij}$$
$$\varepsilon_i - \text{emittance of node i}$$
$$- surface area of emittance node (i)$$
$$B_{ij} - gray body factor from i to j$$
$$q_{rad} = \varepsilon_i A_i B_{ij} (T_i^4 - T_j^4)$$


Path	Fraction of Deposited Energy	Fraction of Reflected Energy
1-2	0.95	0.05
2-3	0.0025	0.0475
3-4	0.045125	0.002275



THERMAL SIMULATION RESULTS

- 3 Cases for each thermal resistance no spring, compressed spring, and expanded spring.
- A 24-hour transient thermal simulation was performed for three cases with different thermal resistances.
- Case 1 (0.0396 K/W) showed rapid heating, reaching over 95% of its ~137 K equilibrium in about 3.5 hours.
- Case 2 (1.5443 K/W) warmed more slowly, reaching only ~98 K after 24 hours.
- Case 3 (16.75 K/W) had minimal temperature rise, reaching just ~92 K, showing how higher resistance slows and limits heating.


omona

PATH TO FLIGHT: PROJECT TIMELINE

 At this given state THERMOSPRING shows a NASA TRL of 2-3, as we have formulated a concept and the application, as well as done some preliminary analysis (proof-of-concept)

PATH TO FLIGHT: PROJECT BUDGET

- \$150,000 Proposed Budget, which includes manufacturing, labor, and any overhead costs
- 3-year Timeline to Final Prototype and integration
- Estimations made from Analogs and NASA costing tools
- Estimated budget ensures long-term reliability and re-usability

Component	Quantity	Unit Cost (\$)	Labor (Hrs)	Total (\$)
Spring	14	3 <mark>,471.16</mark>	4,000	80,596.24
Outer Cylinder	1	376.32	8	1016.32
Inner Cylinder	1	35.32	8	675.51
Skirt	1	1530.84	4,000	33,530.84
Screws	28	100	0	2,800
Washers	28	5	0	140
Push-Push Lock	14		8	14,538.02
Total				133,297
Budget				150,000

CONCLUSION AND FUTURE WORK

- System improves resistance to heat transfer by conduction over traditional structures
- Low part count and complexity improves reliability and manufacturability.
- Future work
 - Integrate linear actuator
 - $_{\odot}\,$ Revise thermal analysis

