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1 Executive Summary
Safe and reliable lunar landings are crucial for future exploration of the Moon. The regolith ejected
by a lander’s rocket exhaust plume presents a significant obstacle in achieving this goal. It prevents
spacecraft from reliably utilizing their navigation sensors to monitor their trajectory and spot
emerging surface hazards as they near the surface. We propose to develop and implement a machine
learning-based sensor fusion system, ARC-LIGHT, that integrates sensor data from the cameras,
lidars, or radars that landers already carry but disable during the final landing phase. Using these
data streams, ARC-LIGHT will remove erroneous signals and recover a useful detection of the
surface, for use by the spacecraft to adjust its descent profile. It also provides a layer of redundancy
for other key sensors, like inertial measurement units. The feasibility of this technology is validated
through the development of a prototype algorithm, which is trained on data from a purpose-built
testbed facility. Based on these findings, a refined algorithm architecture, development timeline, and
budget for ARC-LIGHT are presented.

2 Introduction
2.1 Problem Statement
As international interest in lunar science and exploration grows, the capability for safe and precise
landings on the Moon’s surface has become more important than ever. Recent missions like SLIM,
Chang’e, IM-1, and Chandrayaan have made major strides in this field, but NASA’s ambitious
Artemis and Moon to Mars initiatives, which aim to provide regular access to the surface for crew
and cargo, necessitate enhanced reliability and accuracy of lunar landings. A significant hazard
during these landings is the ejection of regolith as a lander’s rocket plume impinges on the surface.
This Plume Surface Interaction (PSI) results from the engine exhaust of a lander interacting with the
surface of a planetary body during the landing and ascending phases. PSI can eject large amounts of
regolith particles that can limit visibility, spoof navigation systems, and damage surrounding surface
assets. Therefore, understanding and mitigating challenges due to PSI is paramount for the safety
and success of upcoming lunar missions.

A significant challenge presented by PSI is dust interference with navigation systems; the lofted
clouds of regolith can obstruct the view of the cameras, radars, and lidars used for navigation.
During the Apollo landings, astronauts observed various instances where PSI was responsible for
visual limitations and radar interference during landing, most notably in Apollo 15 [1]. Current
lunar missions typically employ cameras for computer vision-based optical navigation, and lidar and
radar systems to model surface features and determine their state vector–their position and attitude
relative to surface landmarks. As the landers near the surface, these systems are continuously
affected by the regolith lofted by PSI. The PSI-induced dust clouds obscure the view of the surface,
change the ambient lighting conditions, and provide a diffuse reflective surface for lidar and radar
signals to bounce off. As such, contemporary lunar landers like Chang’e typically do not use these
sensors during the final stage of vertical descent due to PSI-induced dust interference [2].

To address this issue, we propose to develop a machine learning-based sensor fusion
system that integrates sensor data from standard navigation sensors to be effectively
utilized during the final descent phase of landing. Named Algorithm for Robust Characterization
of Lunar surface Imaging for Ground Hazards and Trajectory (ARC-LIGHT), this system will fuse
measurements from cameras, lidars, or other employed sensors, to remove signal noise and allow the
spacecraft to “see-through” the PSI cloud. This, in turn, will enhance landing accuracy, by allowing
for re-calibration of the state vector during vertical descent and improve landing safety by enabling
hazard avoidance scans at lower altitudes. Since the system employs data from sensors already on the
spacecraft, ARC-LIGHT will not add any hardware mass or complexity to the landers and is readily
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compatible with multiple lander types. To demonstrate the feasibility of this technology, we have
established a testbed facility to gather sensor data affected by a diffuse optically scattering medium.
The dataset from this experiment is used to demonstrate a prototype sensor fusion algorithm for
reconstructing lidar scans. These results inform the proposed budget, timeline, and project risk
management strategy for the development and deployment of ARC-LIGHT.
2.2 Background
Modern lunar landers rely on autonomous systems to safely conduct entry, landing, and descent
(EDL) on the Moon. These landers often rely on lidar or radar altimeters and velocimeters, inertial
measurement units (IMUs), star trackers, and vision-based methods to properly locate themselves
during descent. They also combine two-dimensional image-based methods with 3-dimensional lidar
readings to locate and avoid hazards [3]. These sensors are enabled and disabled as needed during
different phases of descent.

Figure 1: General framework for sen-
sor usage during EDL, showing navigation
methodology at different stages, including
deactivation for vertical descent.

The recent robotic landings of Chang’e 3-6,
Chandrayaan-3, IM-1, and SLIM each employ a sim-
ilar EDL profile, illustrated in fig. 1 [4–7]. Following
descent orbit insertion, landers begin powered descent
around 20 km above the surface. Powered descent con-
sists of three phases: braking, approach, and descent.
The braking phase serves to reduce the lander’s velocity
from orbital speeds. A star tracker and IMU remain
active throughout this phase with lidar altimeters and
velocimeters activated around 10 km. These serve to
update the state vector as it evolves from the initial
orbital parameters. During the approach phase, ranging
from around 5 km to 100 m above the lunar surface,
the lander establishes visual contact with the landing
ellipse. The star tracker, IMU, altimeters, and velocime-
ters remain active, with an optical camera also activated
during this phase. Finally, the vertical descent phase
occurs, preceded by a hazard detection and avoidance
(HDA) scan at 50-100 m above the surface, which sees
a lidar used to determine a safe landing site. Local
landmarks are used to provide a local reference frame,
called terrain relative navigation (TRN) [6]. The lander

continues using sensors as it navigates to a position approximately 50 m above the selected landing
site. Below this altitude, it disables every sensor except for its IMU for final vertical descent [5].

A significant reason for autonomous landers disabling their sensors during final descent is the
effect of PSI. The high density of dust particles ejected during landing can interfere with the sensors
causing them to be unreliable. The Chang’e 3 mission observed this interference 20 meters above the
lunar surface during its landing [4], but PSI onset at higher altitudes has been observed for higher
thrust landers [8, 9]. The lack of active sensor guidance during this period of the flight introduces a
margin of error, potentially leading to catastrophic consequences for the spacecraft.

3 Technology Concept and Innovation
3.1 Outline
To improve lunar landing accuracy and safety, we propose to implement a sensor fusion-based
navigation algorithm, ARC-LIGHT, which takes advantage of the otherwise unused sensor data
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during the final stage of vertical descent. ARC-LIGHT is motivated by three key objectives:
1. Improve landing accuracy within the landing zone, by allowing for re-calibration of the

spacecraft state vector using TRN during vertical descent.
2. Improve hazard detection by enabling hazard avoidance scans at lower altitudes to spot

small surface features that could not be seen from higher altitudes, and pits or rocks moved or
formed by PSI.

3. Provide sensor redundancy in the case of IMU failure during landing.
ARC-LIGHT fulfills these objectives by deploying a number of sensor fusion signal processing
techniques, namely a convolutional neural network (CNN), to integrate multiple data streams and
reconstruct a clear lidar scan of the surface. This machine learning-based framework is flexible and
lander-agnostic, easily adjusting to take advantage of different sensor configurations, including lidars,
cameras, and radars. With ARC-LIGHT, the spacecraft will be able to “see-through” the PSI cloud,
providing an additional layer of navigational redundancy during the crucial terminal landing phase.

3.2 Sensor Fusion Algorithm
ARC-LIGHT uses sensor fusion, which is the signals processing framework of combining separate
sensor datasets into an integrated data product to provide greater measurement confidence and
precision [10]. This technique is most useful where multiple sensor types (e.g. cameras and lidars)
observe a scene simultaneously; lidars offer 3D structure information, while cameras provide a
broader contextualization of the scene. Since each sensor responds to signal interference differently,
the combination of their encoded information allows for a clearer signal to be extracted.

Multiple sensor fusion techniques may be applied to help improve the spacecraft’s lidar and
camera observations during vertical descent. The choice of which techniques to implement depends
on the sensor availability and configuration on the spacecraft, as well as computational resources
and landing precision requirements. Figure 2 outlines a proposed architecture for ARC-LIGHT,
demonstrating how multiple techniques may be combined. This candidate algorithm has been
refined from the example presented in the proposal, based on lessons learned in our research and
development. Future refinement of this algorithm will be informed by trade studies and mission
requirements for computational cost and performance metrics.

In this proposed algorithm, a LIDROR-type filter [11] is first applied to the lidar input to remove
lidar points with low local intensity, corresponding to stochastic cloud backscatter. This form of
backscatter is caused by strong reflection from lofted regolith particles. The camera data is fed into
a CNN which estimates the optical depth of the lofted regolith in different sectors of the image (e.g.
a 16⇥ 16 grid) to accommodate spatial inhomogeneity of the PSI cloud. The optical depth ⌧ is a
dimensionless measure of light extinction, which is related to the number density of lofted regolith n,
regolith cross-section �, and light path length s:

⌧ = n�s (1)
The image data is also fed into a dehazing module, which increases signal-to-noise for better

identification of surface features. Dehazing is an image processing formula that aims to remove haze
or blurriness from an image. One common dehazing algorithm is dark channel prior (DCP). DCP
uses pixels with low intensity in one of the RGB channels; these pixels are deemed the ‘dark pixels’.
It should be noted that spacecraft navigation cameras may be monochromatic. However, even if
there are no RGB channels, DCP is still feasible, since the algorithm runs by channel; therefore, it
would only exercise through the one available channel. It is one of the fastest dehazing algorithms,
and its light computational cost is ideal for a resource-constrained lunar lander.

The optical depth estimate, dehazed image, and filtered lidar data are then fed into a second
CNN, which integrates these data streams to recreate the lidar scan of the surface as if no PSI
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Figure 2: Prototype algorithm architecture. lidar and camera data are input. Image data is processed
in initial CNN to determine optical depth of image in multiple sectors, and dehazed to improve
signal-to-noise. lidar data is filtered to remove significant outliers corresponding to strong PSI cloud
backscatter. These intermediate quantities are combined in a second CNN to reconstruct lidar scan
without interference. Output is sent to spacecraft GNC.
was present. This reconstructed lidar scan is then compared to previous iterations, to detect any
significant errors. If output error exceeds operational bounds due to excessive PSI interference
levels, ARC-LIGHT is automatically deactivated. Assuming the output is within bounds, the lidar
reconstruction is returned to the lander GNC in the native lidar format for immediate use at a
target 1 Hz cadence. This cadence is subject to computational cost and precision requirements
of the mission but is feasible to achieve given the low computational cost of using trained CNNs.
Heuristics strategies may also help to improve computational efficiency. These are techniques to
constrain the decision-making processes and choose optimal solutions without expending unnecessary
computational resources trying to find a mathematically perfect one [12].

3.3 Training and Verification
Large amounts of lunar lander data will be needed to train and test the algorithm before operational
use. It is infeasible to provide a large enough amount of data solely from available lunar landings
given how few have occurred. Ground testing will be employed to supplement these few real-world
cases, but cost and time limitations limit the number of experimental runs which can be performed.
Additionally, in a lunar testbed, it is infeasible to control all experimental factors such as lighting,
vacuum conditions, scale, and gravitational conditions to reproduce flawlessly a lunar landing.
Given these limitations, we propose to pre-train our network using synthetic data generated from
computational PSI simulations.

PSI models can simulate various scenarios with precise control across a broad parameter space
including particle size and density, surface bonding force, and lander descent profiles [13–15]. They
have been developed using various methods to recreate the interaction between rocket plumes and
regolith particles in the lunar environment [16–19]. For instance, the Direct Simulation Monte Carlo
(DSMC) method simulates the behavior of lunar regolith ejecta generated by PSI on a kinetic level
by computing individual “macro-particle” trajectories, including stochastic collisions, and resolving
time-accurate details like density, velocity, and particle size distribution.

These time-resolved datasets provide the basic data needed to generate the needed training data
for ARC-LIGHT. Using both high-fidelity optical simulation and 3D modeling tools like Blender, the
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regolith dust distribution can be translated into synthetic images simulating what a lander would
observe during a landing. Further, Mie scattering calculations allow for accurate lidar backscatter
simulations, providing the associated lidar data alongside the camera images. Testbed experiments
with regolith simulant will help calibrate these optical simulations. While any given simulation and
sensor reconstruction is unlikely to mimic reality perfectly, the broad parameter space captured in
this synthetic data encompasses the conceivable range of conditions the CNN may face on the Moon.

By “pre-training” the CNN on a broad training dataset, the need for real-world data is drastically
reduced. This approach has demonstrated success for CNN object prediction based on synthetic
image-based training [20, 21]. The CNN developed from this training can then be “fine-tuned” using
the limited high-fidelity testbed data and currently available sensor data from lunar landings [22, 23].
Fine-tuning is a training technique to refine the accuracy of a pre-trained CNN toward the specific
use case by performing small training steps on real-world data.

To ensure the safety of the mission and validate the success of ARC-LIGHT, error quantification
will be studied. Error quantification will provide a baseline to establish shut-off protocols. ARC-
LIGHT will be set to deactivate once PSI becomes significant enough that reliable outputs can no
longer be guaranteed. This cut-off point can be determined from an initial hazard scan. Once the
standard error is calculated we can program the system to shut off ARC-LIGHT if the distance
measured is more than one standard deviation from the initial scan.

Additionally, ARC-LIGHT can be verified as a passive system during an initial lunar lander
mission to test out the system, collect data, and build confidence in the pre-training approach. Again
since ARC-LIGHT does not add additional hardware, this implementation to verify will not require
a lot of additional cost or added risk to the mission since it will be incorporated as a passive system
to be tested.

3.4 Operation

Figure 3: Illustration of final descent where
ARC-LIGHT is used to update spacecraft tra-
jectory.

Currently, landers accomplish vertical descent by
integrating their position based on IMU measure-
ments. This leaves them essentially blind as they
are unable to rely on optical sensors like lidar to
confirm their location. This results in growing posi-
tional uncertainty as to where the lander is located
relative to where it believes it is. From the Chang’e
3 and Chang’e 5 missions, positional uncertainty of
�x ⇡ 2 meters was observed [2, 5]. This position
uncertainty is partially due to the combined effects
of error in state vector determination during EDL
and the steady impact of IMU drift between state
vector calibration. Given the constant error present
in any IMU, the integrated error in acceleration and
rotation results in a positional uncertainty [24]:

�x = vt sin

✓
ARW

60

p
t

◆
+ vt sin

✓
BI

3600
t

◆
(2)

where v is the lander velocity and t is time since calibration. ARW represents the IMU’s angle
random walk, which is the random noise error of an IMU’s gyroscopes. BI represents the IMU’s bias
instability, which is the drift the IMU’s measurements have from the average value of its output
rate. For this calculation, we used the parameters from the Chang’e 5 landing, a velocity of 1.5 m/s
and a descent time of 66.66 seconds, and a commercial IMU, with a BI of 0.25 degrees/hour and an
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ARW of 0.125 degrees per
p

hour [5, 25]. In this case, the positional uncertainty caused by IMU
drift is only ⇠ 4 centimeters, which is very small compared to the total uncertainty of ⇠ 2 m. We
can conclude that the vast majority of a lander’s positional uncertainty is caused by other forms of
error, such as error in the initial HDA scan or environmental effects. ARC-LIGHT can combat these
difficult to quantify errors through constant recalibration of the lander’s position.

ARC-LIGHT allows the lander to make periodic re-calibrations of the state vector throughout
vertical descent to account for any drift, as illustrated in fig. 3. This state vector correction is
performed by the GNC with the same software already used during earlier descent stages. This is
done using an extended Kalman filter that combines observational data with the propagated position
estimate, accounting for the computational delay of processing surface observation data [6, 26].

Beyond its ability to increase the precision of a lunar lander, ARC-LIGHT also allows the lander
to detect changes in the surface which include hazards uncovered by PSI, or features that are
too small to resolve at the initial HDA scan height. The reconstructed lidar scan can be used to
assess the magnitude of these hazards and perform course corrections if needed. ARC-LIGHT also
provides redundancy in case the IMU were to fail, as it could help the lander calculate its inertial
measurements based off of the images taken. All of these benefits of ARC-LIGHT will help landers
execute safer and more accurate landings on the Moon.

4 Feasibility Analysis
4.1 Outline
To fulfill its objectives of improving landing accuracy, safety, and redundancy, ARC-LIGHT calls for
the development of machine-learning systems that are robust to the optical interference of the PSI
landing environment. To assess the feasibility of this concept, we have undertaken an experimental
campaign to study the response of lidars and cameras to a simulated lunar environment and develop
a prototype ML-based sensor fusion algorithm for lidar reconstruction. This section reviews the
present operational uses of ML-based navigation in spaceflight, introduces our experimental facility
and prototype algorithm, and presents our findings from this study.

4.2 Review of Machine Learning in Spacecraft Navigation
Sensor fusion and machine learning-based navigation systems have a demonstrated heritage in
autonomous vehicles [27–29], and have been proposed for numerous spaceflight applications [3, 26, 30–
32]. Examples of currently operational ML-based space-based navigation can also be seen in two of
NASA’s Mars rovers, Perseverance and Curiosity.

Perseverance employs the ML-based navigation software Enhanced AutoNav. It sorts a list of
potential paths for the rover to traverse and works with the Approximate Clearance Evaluation
(ACE) algorithm to evaluate the safety of ranked paths [33]. To reduce the high computational cost
of operating ACE, two heuristics are used to accelerate the path selection process: the Gradient
Convolution and Learned Heuristics. Gradient Convolution Heuristic assesses the terrain roughness
by analyzing the terrain’s gradient. Learned Heuristic predicts the ACE value based on the heightmap
data of the terrain. Both heuristics evaluate the local terrain to prioritize optimal paths and reduce
the computational cost to the rover.

Curiosity utilizes AEGIS (Autonomous Exploration for Gathering Increased Science), another
ML-based system used to autonomously select and prioritize targets for analysis [34]. With AEGIS,
Curiosity’s Chemistry and Camera instrument can autonomously select target rocks for its laser
spectrometer and telescopic camera. It analyzes images from Curiosity’s stereo Navigation Camera
or ChemCam’s Remote Micro-Imager to identify potential targets based on adjustable criteria set by
scientists [35].
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These examples illustrate the practicality and reliability of machine-learning applications in
complex space systems. With sufficient development and training, these techniques have helped
improve planetary navigation and streamline robotic operations.

4.3 ARC-LIGHT prototype development
4.3.1 Experiment Methodology

Figure 4: Annotated image of SELENE. The
tank is sealed with latches, allowing for the lid to
be removed for interior access.

We have constructed a physical test chamber to
simulate the optical interference encountered dur-
ing lunar vertical descent and provide us with
training data for prototype algorithm development.
The construction of this facility, the Sensor Efficacy
in the Lunar Environment Experiment (SELENE),
was enabled by the University of Michigan Space
Institute Power Grant, which this team submitted
a proposal for and received in January 2024.

SELENE is composed of a 0.91⇥ 0.91⇥ 1.2 m
sealed acrylic tank with several mounting points
for the sensors, fans, laser, photodiode, and at-
omizer used to simulate and study this optical
environment. Figure 4 shows the layout of the
experiment. A 2D scanning lidar and camera are
mounted on the underside of the removable lid
pointed toward the base of the tank. This is to
mimic the nadir-pointing sensors used by landers.
A 2D lidar was used for prototype simplicity and
budget constraints. A target can be placed at the
base of the tank; either a model of the lunar sur-
face for image processing-focused experiments or
a series of simple blocks for lidar evaluation. The
large scale of the experiment is necessitated by the
magnitude of the manufacturer-stated precision of

our lidar, a Hokuyo UST-10LX. This error is ±4 cm, meaning that the tank and lidar targets must
be far larger to ensure we receive a large signal-to-noise ratio.

Initially, SELENE was designed to use regolith simulant as an optical barrier. The simulant
would be lofted by the fans mounted on the walls to produce a homogenous cloud of suspended
regolith particles. The tank sealant was designed to safely contain the particles, which present a
health hazard and contaminant to the people and other experiments in the laboratory. The 650 nm
laser mounted on one wall, pointed across the tank to a photodiode on the opposite face, measures the
total column density of lofted particles. The use of lunar simulant is postponed until an additional
redundant containment system (e.g. a dedicated chamber surrounding the tank) can be established.
This is necessary to eliminate all possibilities of contamination, even when the testbed lid is open.

In place of regolith, a Di-Ethyl-Hexl-Sebacate (DEHS) atomizer is used to inject a mist of ⇠ 1
micron droplets into the chamber. DEHS is a non-reactive, colorless, odorless substance that can
persist for hours as a mist. It is also safe for human exposure, although masks are worn at all times
during experiments. The fan system is used to circulate the mist around the chamber to establish a
homogeneous distribution of particles. By measuring the photodiode voltage before and after DEHS
is introduced, the optical depth of the chamber can be inferred.

Although the DEHS droplets are in a similar size range as lunar regolith, their optical properties
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Figure 5: Left: Dimensionless scattering coefficients for irregular regolith grains (dashed) and
spherical DEHS droplets (solid) of different radii. Right: Normalized phase function of the same
particles for 0.65 µm wavelength light. Regolith data from [36].

differ. Since we are focused on understanding the performance of lidars and cameras, the effective
cross-section and scattering phase function (SPF) of these particle types are the key parameters
to compare. Optical depth characterizes the amount of light extinction through some medium and
depends on particle cross-section � as shown in eq. 1; as such, knowledge of the relative cross
section allows for a scaling between DEHS and regolith densities required to achieve the same optical
extinction. The SPF describes the probability of light scattering into a given direction. As such, the
value of the SPF at 180� represents the backscattering efficiency of the particle. This is important
for the lidar, which infers the distance to an obstacle using backscattered light.

Figure 5 shows the dimensionless scattering coefficient Qsc = �/
�
⇡a2

�
and SPF on the left

and right, respectively, for both particle types and four particle radii a. The DEHS droplets are
assumed to be spherical and their properties were calculated using miepython [37]. The selected
particle sizes span the size distribution of regolith [38]. Our lidar operates at 0.9 microns, and the
laser-photodiode system operates at 0.6 microns. At these wavelengths, the left panel shows that the
effective cross-section of DEHS is typically within ⇠ 20% of the regolith cross-section, especially for
smaller particles. By contrast, the right panel shows that the backscattering efficiency (i.e. the SPF
at large scattering angles) is typically one or two orders of magnitude larger for the DEHS droplets,
especially at the lidar wavelength of 0.9 micron. Together, this means that the DEHS droplets will
pose a far more significant obstacle to the lidar than regolith grains would. Their comparable cross
sections mean both will scatter a similar amount of light out of the line of sight, which means that
their impact on camera images is more comparable.

Experiments with SELENE proceed by placing a target/s of interest in the tank and sealing
the lid. The photodiode voltage with the laser incident on it is recorded. Then, DEHS is gradually
injected in controlled bursts, with the fan active to thoroughly circulate it. Between each addition of
DEHS, a lidar scan, camera image, and photodiode voltage measurement are gathered and recorded.
This process is repeated until the DEHS presents a completely opaque barrier to the lidar, which
is the most sensitive to the particles as discussed above. This occurs around ⌧ ⇡ 0.6, which is
comparable to the optical depth a lander ⇠ 10 m above the surface would encounter, assuming a
uniform density of n = 109 particles/m3 [9]. These experiments allow us to gather sensor data in a
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Figure 6: Example camera images (top) and lidar scans (bottom) from SELENE. DEHS density
increases from left to right. The lidar scan crosses the center of the image from top to bottom.
controlled setting, and independently characterize the amount of interference using the optical depth
as a proxy. Figure 6 shows images and lidar scans gathered for a simple square target. The lidar
scan maps to the vertical centerline of the image, where X is the position along the tank base and Z
is vertical height.
4.3.2 Software Development Methodology
To demonstrate ML-based sensor fusion feasibility and utility in the context of PSI-impacted landings,
we have developed a prototype algorithm that fuses data from the camera and lidar to deliver a
better data product than either sensor could provide alone. This prototype represents a preliminary
version of the optical depth CNN and lidar reconstruction components of the proposed ARC-LIGHT
algorithm shown in fig. 2.

Our prototype algorithm uses a camera image to estimate the optical depth of
the tank, which allows for the attenuated lidar signal to be re-projected as if the
measurement was made without any scattering medium present. This is possible because
the lidar scan at large optical depths represents a combined signal of the base of the tank and the
backscatter from the DEHS. Figure 6 illustrates this; in the middle panel, the lidar is still able to
detect the difference between the target and the base of the tank, even though the entire structure is
measured to be closer to the lidar located at (0,0). It is hypothesized that knowledge of the optical
depth would allow for the lidar scan to be projected back to the distances observed when no DEHS
is present, allowing us to “see-through” the interference.

A training dataset of hundreds of images taken inside SELENE at different DEHS densities,
ambient lighting conditions, and arrangement of objects within the camera field of view is used to
train the CNN. Critically, the laser-photodiode system allows us to label this dataset according to
the measured optical depth. Figure 7 shows the architecture of the CNN; it accepts a 100 ⇥ 100
pixel black and white image as input and outputs an estimate of the optical depth. Three hidden
layers of 64 nodes (or “neurons”) each are used, with ReLU activation functions between each hidden
layer. A sigmoid activation function is used for the last layer, which ensures the output is a value
between 0 and 1, spanning the range of optical depths tested. For each training step (“epoch”), the
CCN is fed a training image and returns an estimate of the optical depth ⌧̂ . The difference between
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Figure 7: Prototype CNN architecture. The training images with known optical depths are used
to train the network, which is composed of multiple layers of n neurons each. For a given image
(100⇥ 100 pixel values), it outputs an estimate of the optical depth (value between 0 and 1).
⌧̂ and the true optical depth ⌧ , the “loss”, is calculated. The network then “learns” by adjusting the
weights and biases of each neuron via backpropagation to minimize the loss. As such, the loss of the
CNN decreases as it trains, representing convergence towards a solution.

Figure 8: CNN training metrics. (a),(b): CNN estimate of the optical depth for the test data, plotted
against the true value. (a) is before training, and (b) is after training completes. (c): Plot of CNN
loss across the training epochs.

To quantify training success, 20 random images from the SELENE dataset are reserved for testing
its prediction accuracy. The CNN is not trained on these images. Figure 8 (a) and (b) shows the
CNN output before and after training respectively for these test images, as well as the loss over
the training epochs, (c). The center panel shows that ⌧̂ successfully converges to ⌧ after training,
indicating that the CNN can generalize from its training data and estimate ⌧ for new images.

Alongside this, lidar scans at varying optical depths are used to develop an analytic fit for the
signal attenuation, � (✓, ⌧). � is defined as the lidar measured distance over the true distance at
each scan angle ✓ and optical depth ⌧ . For this fitting, scans of the flat base of the tank without any
obstacles were used for consistency. The solid lines in the left panel of fig. 9 shows � as a function
of ✓ for multiple optical depths, as indicated by the line color; red represents small optical depth,
and blue is large. These curves are each fit to the function:

� = a✓ + b+ ✓�c (3)
where a, b, and c are free parameters determined by the fitting. These fits are shown as dashed

lines. The right panel of fig. 9 shows the values of the free parameters as a function of ⌧ . A second
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set of functions are fit to these free parameters. Together, this allows for the determination of � as a
function of ✓ and ⌧ for any new lidar scan. The algorithm thus deploys the CNN to compute ⌧̂ and
uses this output to compute � at each scan angle ✓. Dividing the raw lidar signal by � gives the
projected lidar scan.
4.3.3 Prototype Results

Figure 9: Top: lidar distance attenuation
as function of angle. 0 degrees is look-
ing straight down. Color represents the
optical depth of the tank for each scan,
ranging from 0 (red) to 0.6 (blue). Solid
lines are lidar data, dotted lines are ana-
lytic fit. Bottom: eq. (3) free parameters
as function of ⌧ .

Figure 10: Projections of lidar scans for three DEHS
densities. Left: images from SELENE labeled by the
measured optical depth and CNN estimate. Right: As-
sociated lidar scan, showing the raw lidar scan (dashed
blue), ground truth geometry (black solid), and projected
lidar scan using ⌧̂ (blue solid).

Figure 10 shows three example lidar reconstructions of SELENE’s tank base at different optical
depths using this prototype algorithm. The lidar scan corresponds to a slice down the center of
the image. In all cases, ⌧ and ⌧̂ are similar, indicating that the CNN successfully estimates the
image optical depth. This is to be expected, given the tight agreement shown in the center panel of
fig. 8. The right panels show the associated lidar scans for each image. The raw scan data, shown
as the dashed light blue line, incorrectly measures the tank base to be closer to the lidar than it
is. The black dashed line shows the true distance, as measured when no DEHS is present. The
solid blue lines show the lidar scan projected using the CNN output ⌧̂ and the lidar attenuation
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parametrization �. In all cases, there is good agreement between the ground truth and the projected
lidar scan. This indicates that this system can estimate the distance to the tank base even at high
optical depths where the lidar scan is significantly impacted by the DEHS.

These promising results suggest that this sensor fusion methodology can provide significant
advantages in measuring the distance between the lidar and the target obstacle. Nonetheless, this
system relies on multiple limiting assumptions, which could be easily addressed in the near future. For
instance, in calculating the true optical depth, the photodiode voltage was assumed to scale linearly
with incident intensity. The optical depth between the laser source and photodiode was further
assumed to be identical to the optical depth of the camera image. Correcting these assumptions
would improve the accuracy of the optical depth ground truth values used for CNN training, and
hence the CNN output. At present, due to the simple analytic fit used to determine �, the lidar
projection is only reliable for the same geometry it was fit to. Distance estimation error begins to
arise when the height of an obstacle is a significant fraction of the distance between the lidar and the
target since the tops of these obstacles are therefore at different optical depths. Using a second CNN
to predict � would remove the limitation of requiring a consistent surface geometry for the lidar
projection. Modifying the CNN to independently predict ⌧ in different sectors of the image would
also help build resilience to this issue. As identified in sect. 4.3.1, the DEHS droplets are particularly
effective in backscattering the lidar signal. To improve the fidelity of this prototype, experiments
with lofted regolith or droplets of a smaller refractive index (and hence a lower backscattering
efficiency) would be valuable.

This prototype demonstrates how ARC-LIGHT will fulfill its three objectives. By reconstructing
a compromised lidar scan using camera imagery, this system allows for an independent measurement
of the sensor’s position relative to the surface and the identification of its geometry. As outlined in
sect. 3.4, this may be used for state vector calibration or IMU redundancy. The proposed addition
of a CNN for lidar attenuation estimation will further enhance this system’s ability to resolve small
surface hazards and help decrease the systematic error near nadir angles. On a technical level, it
demonstrates how such a system may operate with the limited computational resources present on
the lander; while the CNN training is slow, it is extremely fast to query the trained network to
determine optical depth and project the lidar points, taking a fraction of a second on a standard
laptop.

5 Technical Management
5.1 Risk Analysis
The development and deployment of ARC-LIGHT carries inherent risks. Here, we review the primary
risks related to project timeline, budget, and outcomes, and discuss measures to mitigate them.
5.1.1 Algorithm Architecture Revisions
Developing a robust and accurate ML algorithm for PSI mitigation is a complex task. With
limited lunar regolith data available, the algorithm might struggle to learn the nuances of PSI
phenomena. This could lead to inaccurate performance and an inability to effectively mitigate PSI
risks during lunar landings, necessitating significant revisions to the algorithm design, causing delays
and exceeding project budgets. Our synthetic data generation approach, which will be developed in
parallel to the algorithm architecture, helps to mitigate this risk. By establishing a flexible simulation
framework and data generation pipeline, we can modify the training data type to suit any needed
changes in the algorithm. Initial trade studies and algorithm prototyping will also help reveal any
significant challenges early in the project.
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5.1.2 Algorithm Errors
An inherent challenge stems from the nature of ARC-LIGHT as a convolutional neural network. Unlike
traditional, rule-based systems designed by humans, neural networks cannot be easily “debugged”
by hand. While extensive training aims to produce the desired outputs, unforeseen behavior or
errors might still occur in rare cases. To mitigate this, we will establish safeguards and checks that
can override the system’s output in such scenarios. Methods that inherently “bound” the network’s
outputs may also be used, to ensure that problematic outputs are not returned to the GNC. An
example of this is our use of a sigmoid activation layer, as described in sect. 4.2, which intrinsically
bounds the CNN output between 0 and 1.
5.1.3 Personnel Expertise
Finding qualified personnel with expertise in both machine learning and spacecraft navigation
systems might be challenging. Delays in hiring or a lack of qualified candidates could negatively
impact project timelines. The specialized skill set required for this project may necessitate higher
salaries or recruitment efforts focused on specific academic or professional backgrounds. To address
this challenge, the project prioritizes a modular design for ARC-LIGHT with clear and well-defined
interfaces between signal processing modules. This modularity allows specialists in machine learning
and GNC systems to work more independently on their respective components, simplifying the hiring
process by making it easier to find qualified candidates with expertise in each specific domain.
5.1.4 Hardware & Software Integration
Integrating ARC-LIGHT with existing GNC systems could pose compatibility challenges, given the
diversity of existing landers developed for CLPS, Artemis, and other initiatives. By designing the
algorithm output to match the native data format of the lander’s sensors, our approach aims to
minimize the need for extensive modifications to either ARC-LIGHT or the existing GNC software.
We have also allocated a significant margin in our schedule to accommodate any delays in spacecraft
integration and testing.
5.1.5 Testing & Validation
As with all machine learning systems, large quantities of data are needed for ARC-LIGHT training
and testing. Given the paucity of lunar landings, alternate means of gathering this data are required.
To address this, the project employs a combination of experimental and synthetic data generation.
Experimental campaigns using a higher fidelity testbed will help supply realistic scattering data
for the cameras and lidars, and extensive synthetic data will cover the broad parameter range of
conditions the lander may encounter. Additionally, the performance of ARC-LIGHT integrated into a
lander will be thoroughly validated through ground and in-flight testing. Since ARC-LIGHT imposes
no additional payload burden, the software can be deployed for its initial flight in a non-active mode,
to verify the system without adding risk to the landing. This would involve the system performing its
sensor fusion calculations without returning output to the GNC, allowing for post-flight verification
of outputs before implementing it as a live system for following landings.
5.1.6 Signal Processing Computational Cost and Reliability
Each signal processing technique employed by the algorithm carries the risk of failing in the lunar
environment or demanding a high computational cost. For instance, the two biggest problems with
DCP-based dehazing are categorized into obvious and non-obvious failure. Obvious failure is when
pixels appear brighter than the ambient light in an image. Non-obvious failure results from pixels
being significantly brighter and standing out from their neighboring pixels. Thus, dehazing is difficult
in bright environments, or in images that are brightly colored or mostly white, such as the moon.

13



To rectify obvious failure, pixel minimum can be rescaled to ensure bright surfaces do not occur in
the same section of an image as pixel minimum. Non-obvious failure can be mitigated by normalizing
the minimum pixel value in a manner that appropriately corresponds to the average haziness observed
throughout the scene. This modified DCP also performs significantly faster than the original [39].
Heuristics strategies, such as those discussed in sect. 4.2, may also help to improve computational
performance to achieve the target cadence.
5.2 Timeline

Figure 11: Timeline organized by year and month.

The process of ARC-LIGHT develop-
ment and deployment is divided into
three key activities. Development be-
gins by assembling the software and
dataset generation teams, defining
project requirements, and identifying
suitable spaces for software develop-
ment and testbed operations. Prefer-
ably, this location would have an ex-
isting “dirty” vacuum chamber which
would allow the use of regolith sim-
ulant without threatening sensitive
hardware. Several compatible facil-
ities investigating PSI exist, includ-
ing one at NASA Marshall [40]. The
testbed experiment should be designed
to reflect PSI on the lunar surface as
accurately as possible to provide a real-
istic optical environment for the cam-
eras and lidars. Our work with SE-
LENE provides a basic template of
the key features of this facility. The
team working on the testbed will be
divided into 3 subteams, with 1 for
each sensor (camera and lidar), and
1 for the testbed’s structure. At the
same time, we also study the available
PSI models and develop the software
pipeline to run large numbers of simu-
lations over a broad parameter range
(as detailed in sect. 3.3) and translate them into synthetic sensor data. These tasks are represented
in green in fig. 11.

The yellow tasks correspond to software development. While the experimental and synthetic
datasets are prepared, a team working in parallel begins work on algorithm trade studies, prototyping,
and ultimately final version development. The team will be further divided into 3 subteams, 1
assembling training data, 1 developing the code, and 1 verifying the data and the code. This work
builds on our prototype development by scrutinizing lander software and hardware constraints to
arrive at a more refined algorithm architecture than our candidate design shown in fig. 2. The
algorithm team will work closely with the testbed and synthetic data teams to ensure the appropriate
data is produced for the selected algorithm design.
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Last, the red tasks encompass integration and testing with the lander. As with all “payloads”,
ARC-LIGHT will be integrated into the spacecraft and tested to ensure successful communication
with the spacecraft sensors and GNC. Schedule reserves have been allocated to address any unexpected
delays or issues with integration. Once complete, ARC-LIGHT is ready for flight.
5.3 Budget
The project requires a total of 15 employees during its 3 ¼ year runtime. The workforce will be
divided into 6 subteams, with the 3 testbed subteams having a lead engineer, junior engineer, and
technician and the 3 software subteams having a lead engineer and technician. 5 of the lead engineers
will be needed for the entire project, with an estimated total workload of 780 full-time equivalent
(FTE) weeks. The 6th lead engineer will only be needed for 21 months of the project, with an
estimated workload of 84 FTE. The 3 junior engineers are needed for 21 months of the project, with
an estimated total workload of 252 FTE. The 6 technicians are only needed for 18 months of the
project, with an estimated total workload of 432 FTE. The total estimated cost for the combined
workload of the workforce required for this project is 1548 FTE.

To develop the high-fidelity lunar testbed, several hardware items are required. The vacuum
chamber structure is estimated to cost $150,000, the sensors have $6,900 allocated to them, the
small rocket thruster is estimated to cost $50,000, and the regolith simulant will cost $3,250. A total
of $10,000 has been allocated for extra hardware that may be required for the project. The total
estimated cost for the hardware used for this project is $220,150. These costs could be reduced if a
suitable existing vacuum chamber can be accessed.

High-grade computers will be necessary for the creation of the ARC-LIGHT software. 4 computers
would most likely be needed, totaling an estimated $20,000. 3 years of cloud computing access would
be necessary for conducting the PSI simulations for synthetic data generation and CNN training,
totaling an estimated $30,000. A total of $5,000 has been allocated for any additional software costs.
The total estimated cost for the software development is $55,000. The combined estimated cost of
the ARC-LIGHT project is $275,150 plus 1,548 FTE weeks, approximately amounting to $3,300 k
depending on salary costs.

Figure 12: Budget estimating the total cost of the development of ARC-LIGHT.
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