UNIVERSITY

Introduction

The simulation of vacuum plume dynamics involves capturing the intricacies resulting from the transition of continuum flow to freemolecular flow. Rarefied gas flows can cause significant lunar surface erosion and high-velocity dust clouds. Understanding exhaust plume behavior and its interaction with lunar regolith requires simulating both continuum and rarefied gas flow regimes.

Ansys FLUENT, a widely used CFD software, excels in the continuum flow regime by solving the Navier-Stokes equations. However, these equations become unreliable where Knudsen numbers of the flow regimes exceed 0.01. Rarefied gas flows are better solved using the Boltzmann equation, but for large-scale simulations this requires significant computational resources.

To address this, we are integrating the Direct Simulation Monte Carlo (DSMC) method with Ansys FLUENT using custom user-defined functions (UDFs). UDFs can be used to customize and control various aspects of the simulation, such as boundary conditions, material properties, source terms, and solution monitoring and can manifest as complex algorithms. In this case, we are using it to calculate Knudsen number values and to perform DSMC to simulate gas molecules and particle interactions with the rarefied gas regime.

By applying DSMC locally where rarefied gas is present, we can enhance computational efficiency, leveraging the strengths of both methods to more easily simulate and understand the effects of rocket exhaust impingement on the lunar surface. While this method can be scaled for use with high-performance computing clusters, the goal is to perform accurate solutions efficiently on less powerful systems.

> Academic Partnership Ansys

Ansys[®] Academic Research Mechanical and

Modeling

Nozzle Inlet	
Axisymmetric Line	Open Boundary
Regolith Surface	

Figure 1. An axisymmetric domain and nozzle geometry approximate the Blue-Origin BE-7 engine at an elevation of 4 meters.

- Nozzle dimensions based on Blue Origin's BE-7 engine
- Inlet pressure derived from thrust specifications and approximated geometry
- Open boundary in far field
- Axisymmetric along central axis of nozzle
- Domain measures 6 meters by 6 meters
- Several particle layers simulating lunar dust ranging from 10 µm to 70 µm along the bottom region of the domain

Numerical Simulation and Physical Validation of Regolith Ejecta **During Plume Surface Interaction**

Dutton Webb, Grant Garrison Advisor: Dr. Bin Xiao

CFD-DSMC Hybrid

DSMC

DSMC is a probabilistic method that directly models the statistical behaviors of physical quantities. In this case, the gas molecules are simulated and lunar regolith particles are statistically sampled in the regions of interest. Particle velocities, positions, and collision frequencies are tracked.

The Knudsen Number (K_n)

A dimensionless parameter defined by the ratio of the mean free path (λ) of molecules in the flow and the characteristic length scale (L) of the system. By calculating the Knudsen number for each cell in the domain, DSMC can be applied to a target range of the flow regime. Balancing solve time and solution accuracy is the product of this CFD-DSMC Hybrid method.

For regions where $K_n \leq 0.1$, the Navier-Stokes Equations provide a more efficient solution. In contrast, for regions where $K_n \ge 0.1$, the Boltzmann equation allows for improved accuracy.

Knudsen Value	Type of Model
$K_n \leq 0.001$	Continuum Regime (Navier-Stokes equations)
$0.001 \le K_n \le 0.1$	Slip Regime (N-S with velocity-slip and temperature-jump boundary conditions)
$0.1 \leq K_n \leq 10$	Transition Regime (Boltzmann equation)
$K_n \ge 10$	Free-molecular Regime (particle methods such as DSMC)

1 M	odel Algorithm
Navier-St	tokes solution of the
e	ntire domain
Use Knudsen n into continu	umber to partition domain um and rarefied regions Set DSMC Boundary Condition from the NS solution at the interface Solve the flow in the non-equilibrium region using DSMC
	Fail Check Convergence Update the boundary conditions in the NG Solution
	the NS Solution
	Beady for Post-
	processing Analysis
	Figure 3. CFD-DSMC Hybrid Method Algorithm
<u> </u>	Boltzmann Equation
Navier-	Stokes Equations
◀ 0.	01 0.1 1 10 100 ►
	Local Knudsen Number
nge in si ero, and	ize from 10 micrometers to 70 micrometers, with an average d the nozzle inlet pressure is set to 3000 psi. The nozzle walls
	Pressure Contour 1 3.000e+03 2.700e+03 2.400e+03 2.100e+03 1.800e+03 1.500e+03 1.200e+03 9.000e+02 6.000e+02 3.000e+02 0.000e+00
the hing	Figure 5. This pressure distribution is typical of fluid flow through a converging-diverging nozzle.
	Particle X Velocity [m's] 1.00e+02 8.00e+01 6.00e+01 4.00e+01 2.00e+01 7.78e-04 -2.00e+01 -4.00e+01 -6.00e+01 -1.00e+02 particle-tracks-1
ore	Figure 7. The dust particles on the regolith surface are
	propelled sideways and upwards by the plume flow, gaining acceleration as they rise.

Vavier-Stokes solutior entire domain Use Knudsen number to part into continuum and rarefi Figure Navier-Stokes Equa 0.01	the advantage of the set of the
Vavier-Stokes solution entire domain Use Knudsen number to part into continuum and rarefi Figure Vavier-Stokes Equa 0.01	the boltzmann equation can be applied across the egimes, solving the equation with DSMC requires sputational resources. The CFD-DSMC hybrid ges the efficiency of the Ansys FLUENT continuum enting DSMC only where rarefied gas regime is
Use Knudsen number to part into continuum and rarefi Figure Navier-Stokes Equa 0.01	the solution domain the regions the region using DSMC Boundary Condition from the Solution at the interface the solution at the interface the solution is in the NS Solution is in the Solution is in the NS Solution is in Successing Analysis analysis the Solution is in the So
Figure 4. While ange of flow reignificant com nethod leveragolver, implemented letected.	Fail Check Convergence Update the boundary conditions in the NS Solution Success Ready for Post- processing Analysis analysis the 3. CFD-DSMC Hybrid Method Algorithm Boltzmann Equation 0.1 1 1 10 100 Local Knudsen Number the Boltzmann equation can be applied across the egimes, solving the equation with DSMC requires apputational resources. The CFD-DSMC hybrid ges the efficiency of the Ansys FLUENT continuum enting DSMC only where rarefied gas regime is
Figure Navier-Stokes Equa 0.01 igure 4. While ange of flow re ignificant com hethod leverag olver, impleme etected.	Fail Check Convergence Update the boundary conditions in the NS Solution Success Ready for Post- processing Analysis are 3. CFD-DSMC Hybrid Method Algorithm Boltzmann Equation 0.1 1 1 10 100 Local Knudsen Number e the Boltzmann equation can be applied across the egimes, solving the equation with DSMC requires uputational resources. The CFD-DSMC hybrid ges the efficiency of the Ansys FLUENT continuum enting DSMC only where rarefied gas regime is
Figure Navier-Stokes Equa 0.01 igure 4. While ange of flow re ignificant com hethod leverag olver, impleme etected.	success Ready for Post- processing Analysis the 3. CFD-DSMC Hybrid Method Algorithm Boltzmann Equation 1 1 1 10 100 Local Knudsen Number the Boltzmann equation can be applied across the egimes, solving the equation with DSMC requires putational resources. The CFD-DSMC hybrid ges the efficiency of the Ansys FLUENT continuum enting DSMC only where rarefied gas regime is
Figure Navier-Stokes Equa 0.01	Ready for Post- processing Analysis The 3. CFD-DSMC Hybrid Method Algorithm Boltzmann Equation ations 0.1 1 1 10 100 Local Knudsen Number the Boltzmann equation can be applied across the egimes, solving the equation with DSMC requires aputational resources. The CFD-DSMC hybrid ges the efficiency of the Ansys FLUENT continuum enting DSMC only where rarefied gas regime is
Figure Navier-Stokes Equa 0.01 igure 4. While ange of flow re ignificant com hethod leverag olver, impleme etected.	re 3. CFD-DSMC Hybrid Method Algorithm Boltzmann Equation Boltzmann Equation 0.1 1 10 100 Local Knudsen Number 100 100 100 e the Boltzmann equation can be applied across the egimes, solving the equation with DSMC requires uputational resources. The CFD-DSMC hybrid ges the efficiency of the Ansys FLUENT continuum enting DSMC only where rarefied gas regime is
Navier-Stokes Equa 0.01	Boltzmann Equation Attions 0.1 1 1 10 100 Local Knudsen Number e the Boltzmann equation can be applied across the egimes, solving the equation with DSMC requires apputational resources. The CFD-DSMC hybrid ges the efficiency of the Ansys FLUENT continuum enting DSMC only where rarefied gas regime is
Navier-Stokes Equa 0.01 igure 4. While ange of flow re ignificant com hethod leverag olver, impleme etected.	e the Boltzmann equation can be applied across the egimes, solving the equation with DSMC requires oputational resources. The CFD-DSMC hybrid ges the efficiency of the Ansys FLUENT continuum enting DSMC only where rarefied gas regime is
 0.01 igure 4. While ange of flow regnificant complete and leverage olver, implemented etected. 	0.1 1 1 10 100 Local Knudsen Number
igure 4. While ange of flow re gnificant com nethod levera olver, impleme etected.	e the Boltzmann equation can be applied across the egimes, solving the equation with DSMC requires oputational resources. The CFD-DSMC hybrid ges the efficiency of the Ansys FLUENT continuum enting DSMC only where rarefied gas regime is
igure 4. While ange of flow re gnificant com nethod leverag olver, impleme etected.	e the Boltzmann equation can be applied across the egimes, solving the equation with DSMC requires oputational resources. The CFD-DSMC hybrid ges the efficiency of the Ansys FLUENT continuum enting DSMC only where rarefied gas regime is
ge in size fror ro, and the n	n 10 micrometers to 70 micrometers, with an average ozzle inlet pressure is set to 3000 psi. The nozzle walls
	Pressure Contour 1 3.000e+03 2.700e+03 2.400e+03 2.100e+03 1.800e+03 1.500e+03 1.200e+03 9.000e+02 6.000e+02 3.000e+02 0.000e+00
ne Fi ing th	gure 5. This pressure distribution is typical of fluid flow prough a converging-diverging nozzle.
	Particle X Velocity 1.00e+02 8.00e+01 6.00e+01 4.00e+01 2.00e+01 7.78e-04 -2.00e+01 -4.00e+01 -8.00e+01 -1.00e+02 warticle-tracks-1
ore Figu	ure 7. The dust particles on the regolith surface are

Prelimina

Four layers of dust cover the regolith surface. The dust particles size of 50 micrometers. The open boundary pressures are kept are treated as no-slip walls.

Figure 4. Under high pressure, the plume accelerates throug nozzle's throat. Upon exiting, it expands and slows before rea the regolith. After impact, the plume reflects and accelerate diagonally on both sides.

Figure 6. The plume extends along the nozzle wall, slowing b reaching the regolith. On impact, it rebounds and accelerate diagonally sideways.

