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What is PSI

* Interaction between lander
exhaust and planetary surfaces

S ) * | eads to adverse effects such as
= Plume visual obscuration and lander
/ instability
Ejecta Cloud * Proper management of PSlI is
\ crucial to prevent damage to
S Rl mission critical equipment and
— N enhance overall safety of lunar

SR expeditions

Overview
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X stimated ~2 metric tons of soil
B eroded during Apollo 12 landing NASA/JPL-

Lander Safety Architecture Sustainability Scientific Interests
* Surface visibility - Damage to nearby e Contamination of the surface
obscured hardware and exosphere with volatiles
* Plume recirculation : - :
, - Soil modified for next * Local morphological changes
* Uneven surface erosion mission

Overview
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* Goal: Quantify relative PSI vulnerability

* Site selection is based on rapid
modeling
* Insufficient data for high fidelity models
* Broad trends, not fine optimization

* Geotechnical properties
* Particle size
* Particle shape
* Bulk density
* Cohesion
* Permeability

Overview
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. , o Radar Remote Sensing of
“In light of NASA’s Artemis Il mission [...], here we Planeta ry Surfaces

utilized radar observations from the Miniature

Radio Frequency (Mini-RF) instrument on Campbell (2002) [12]
board LRO to characterize this South Pole -
crossing ray. Radar observations can[...]
constrain bulk density and composition (i.e.,
dielectric permittivity).” -Rivera-Valentin et. al,
2024

“Combined, these datasets can characterize the
radar scattering properties of the lunar surface

[...] and are uniquely valuable for identifying
landing hazards and constraining the

dielectric properties [...] of regolith within the
Artemis landing zones.” -Patterson et. al, 2023 0 1s . 20 25 30

Dielectric constant £

Overview
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Angular Rate Measurements
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. | AYAYAY
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States
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PIE

SCALPSS
Stereo Camera

1 v\v\
| & =

Ejecta STORM

Laser Scattering

SEAL
Mass Spectrometer

Navigation and Hazard
Avoidance

 Active terrain relative navigation (TRN)

* Camera images of the surface
* Active lidar measurements

o * Landing within 100m of a target

mm Wave Doppler

* Requirement set for HLS
* Demonstrated by the JAXA SLIM lander

* Interest in diversifying Precision Landing
& Hazard Avoidance (PL&HA) capability

LLBI
Aerothermal Effects * Lidar & radar, multi-function sensors

Technical Gap: Preventative action prior to Technical Gap: PSI relevant hazards and
the onset of PSI navigation

HINDER addresses gaps in PS| and PL&HA sensors

Overview



HINDER| CONCEPT OF OPERATIONS I ILLINoOIS

URBANA-CHAMPAIGN

Phase O: Phase 1: Phase 2: Phase 3: Phase 4:
Target Site ' Hazard Relative ' Hazard ' Surface ~ Ascent
Selection " Navigation ~ Detection ' Measurements

| -~ & Avoidance | |
| | | |
|
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Exploratory Phase

Concept and Technology
Development

Focus in on PSI model
research and radar
component selection

Initial prototyping of
hardware and software

TRL 1-3

2025-2027:
Foundational
Phase

Pathfinder Experiments and
Product

) Pathfinder is developed and

\ P4 .
_@_ tested on terrestrial lander
\=f testbeds. Preliminary results

e used for developing a
precursor mission.

,, Precursorlaunch on Artemis
/Y Il with the sensor in data

“Temiss collection mode
TRL 4-8
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2028:
Operational Phase

Mission Deliverable

HINDER’s performance from
Artemis 3 is evaluated and
necessary design changed are

made

into Artemis 1V with full
TemisS operational capability

TRL 9

/Y The final iteration is integrated

HINDER will launch a precursor mission on Artemis lll, with a full-scale mission on Artemis IV

Overview
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* Problem: Apollo experience cannot be
extrapolated to HLS

* Response: Define a high-level approach
which can be applied to other models

* Demonstrate the concept using Apollo era
experience and data

* Use Roberts’ Model as a preliminary rapid
model of higher altitude effects

* Assumptions: Volumetric erosion rate
decreases with increasing bulk soil density

Roberts’ Model
dy 2(t —1%)

ot a-u-o-c-cos(fB)

Are we outside Apollo-informed experience?

Rapid Modeling

Erosion-rate based, test-derived rapid methods

One-Way / Loosely Coupled Models

CFD inputs to physics-based/engineering models

Two-Way Coupled Models

Data products used to validate high-fidelity models

Image from [8]

Simple, rapid Apollo era models are used for concept demonstration

Overview
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* Selected from 13 candidate regions
* Multiple sites per region
* Unprepared sites

* Selection factors e At '-
e Massif} B
. e e . . ) austlnl le . onnecting Ridge Y :
* Accessibility (timing dependent) Ty e %’Lﬁ%msz“
e Terrain slope s, w gl

* Line of sight to Earth . \,‘
* Lighting conditions 2
* Gap: PSI vulnerability

Target Site Selection
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* Top models are sufficient for
hazard detection

m
* High performance models have Model Error

reported errors <5% Fresnel Reflection Kumar et. al, 2022 [14] < 3%
» Dielectric constant range of >30% maocficients (6 samples)
e Insufficient for fine ootimization Modified Campbell Callaet. al, 2013 [15] <20%
sutticie O P Inversion (5 samples)

within about 5% variation
° Co-Polarization Ratio  Singh et. al, 2022 [16] N/A

* Proof of concept | —
. Hybrid Polarimetric Gao et. al, 2023 [17] ~10%
* Two simple models selected for Scattering Similarity (16 samples)

demonstration Symmetric Coherency Bhattacharya et al. N/A
* Full implementation should use a |LandAnisotrop 2015)[18

higher accuracy model

Target Site Selection
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Apollo 17 Site Analysis

* Applied to preexisting data

* Mini-RF: Lunar Reconnaissance - A AR e 5*&
Orbiter and Chandryaan-1 : 43

* Near global coverage at 30m/pixel .6

* Demonstrated using data over the ,j
Apollo 17 site A

- !
5 el 5
a1
¥ B 1
3

* In-situ measurements can be used to

2
verify the accuracy of the model 30T e earesion /
W 287 —— True Value
0 1 0 1 : D 267
O g~ E(Sl + Sz) O v~ E(Sl - Sz) ¢ Look cmgle &= s
522
sin[¢] ? 4 20
g = |
- 0 025 1.81 @
. _1 O- LH ! ! \ . ! !
Sin | COS o0 —¢ 20 22 24 26 28 30 32 34
Lv True €'

The modified Campbell model can be used as a proof of concept

Target Site Selection
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Density (g/cm?3)

Target Site Selection
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* Performed on Earth, prior to mission launch
* Use pre-existing data from lunar orbiters

* Suggested by members of the Mini-RF team
for scientific purposes

* Use bulk density estimates to identify PSI
hazards in a landing region

* Apply more accurate dielectric constant
estimation methods

* Estimated >25% variation in bulk density
within 1km diameter

* Requires minimal changes to HLS
* Fast and at low cost

Target Site Selection
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Phase 1: Hazard Relative Navigation

~1000mM-490m
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Navigation and Hazard
Avoidance Gaps

* Terrain Relative Navigation

* Active terrain sensing to enable TRN and hazard
detection during descent over dark, shadowed, or
illuminated surfaces

NDL SPLICE
Navigational Doppler Lidar Computer for PL&HA processing  « Sensor Capabilities

* New technological advancements in radar &
lidar, multi-function sensors, reductions in SWaP
(size, weight, and power)

By * Facilitate technology transfer and invest in
HDL ALHAT commercial solutions

Hazard Detection Lidar Sensor suite for PL&HA

Technical Gap: Enabling real-time Technological Gap: hazard detection and
preventative action terrain relative navigation

HINDER addresses technological gaps existing in NASA’'s PL&HA and HDA sensor suite

Hazard Relative Navigation
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|madar  |Lidar | Optical Cameras

Accuracyin

Dielectric Constant High
Measurement

Penetratlon Depth Moderate
Resolution Moderate-High
Welght & Power Moderate
Requirements

Data Proc.:essmg Moderate
Complexity

Integration

Capability with Moderate

Trajectory Profile

Operation-ability in
dark/illuminated/ High
shadowed regions

Low

Low
High

Low

Low

High

High

Low/None

None
High

Low

Low

High

Low/None

Radar is selected over other technologies due to heritage in dielectric constant measurements

Hazard Relative Navigation
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e
e T,

Instrument Performance Requirements

Maximum Altitude of Operation ~1000+150m (15% margin) Begins with HRN initiation
Minimum Altitude of Operation 0.33m Lowest payload height

Blue Ghost’s Diameter;
Smallest US-based lander

Min. Radar Spot Diameter at 50m Altitude

Minimum Field of View

V' 4 = 21

W\
"
H

Hazard Relative Navigation @ oa %
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BRSE NASA LaRC

N % Dust Ejecta
DERT MSL TDS HINDER T3¢ Wi j
Radar - o &
Frequency [YNeITHR 36GHz  15GHz  24GHz | sy 7/2""
Power
Usage 2.6 W 5-20 W 50-75 W 20W NASA JPL Mars
Science Laboratory
Be.am 16 deg 3deg 0.1-3.5 3.5 deg Terminal Descent
Width deg Sensor (MSL TDS)
UGN 51 50Bm 33dBm  35dBm  115dBm
Power
Arltenna @2cm @20cm @41 cm (136 cm HINDER
Size Radar
: Sensor
Steering None None AESA AESA

Hazard Relative Navigation



UNIVERSITY OF

HINDER ILLINOIS

AAAAAA ~-CHAMPAIGN

*Antenna (2:1)
w/lander | o Radar aptly designed for

integration ease and
flexibility
* Multiple potential
integration points aboard
*Antenna (2:1)
w/ lander lander for stakeholder to

60°
FOV

choose
60° * Bracket and integration
——————— : T Fov procedures follow closely

to that of SCALPSS

" *Antenna (1:1)
w/ lander
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 Measurements begin at

. Run in data
~1000m altitude Increase pulse],. Yes ~ Altitude No | collection
. . 'Width & ain |b >490m? — mOde for
e Similar to other Hazard 9 remainder
of the mission

Detection instruments
e Calibration from N°T

1000m-490m altitude Data
. . . Scan the matches - YeS | Successful
* Real-time data Is verified ; landing site existing calibration :

. L. data?
against existing data
* Signal processing filters
out abnormal data

Hazard Relative Navigation
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v

Radar POV with Overlayed Dielectric Constant Map LRO Map from equivalent location

Hazard Relative Navigation
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* Begins during at ~1000m altitude
* Majority of PL&HA instruments initiate concurrently

* Use phased-array radar to match obtained data to
existing LRO data
* Done for verifying nominal radar operations
* Used as an additional method of terrain relative
navigation
* Requires integration of L-SWaP Phased-Array radar
* Relatively moderately-sized payload for CLPS
* Small payload for HLS

Hazard Relative Navigation



Phase 2: Hazard Detection and Avoidance
490m-30m
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The Hazard Detection & Avoidance
(HDA) sensors aboard HLS detect:

* Craters
* Steep Slopes
* Boulders o

* Other physical obstacles

~ Lunar Orbiter 3: 92-h1

HDA does NOT consider geotechnical
variations of potential landing sites
that can affect cratering and ejecta

Hazard Detection & Avoidance
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Current Technology: Advancements:

* Limited resolution of data * More hazard maps needed for
before flight sensor fusion process

e Sensors * Computing methods translate

sensor data into hazard maps
* Hazard maps are cost maps

intended to continuously update
and choose safest landing site

o ’

o Optical Cameras
o Lidar

o Inertial Measurement Units (IMU)

Scan #1: Lidar Scan Scan #1: Camera Image

- B

Scan #2: Lidar Scan Scan #2: Camera Image

Hazard Detection & Avoidance
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* Multitude of HDA sensors fuse data together
* Creates a more accurate model of landing terrain

* Fused map is used to select final landing site at lowest “cost”

Digital Elevation Hazard Map Slope Hazard Map Surface Roughness Hazard Map = :
, C —— 15
_ __ 100 > E L
£ £ £ = 5
S < S o
[)) o 200 o)) o
c c c '5
S S S
< < < —_— 5
E 5 o E 5
G G % o
8 & w0 8 i
-15
N | 500 . 20 : 0
100 200 300 400 500 100 200 300 400 500 100 200 300 400 5 -20070 -100 0 100 200
Position Along Y (m) Position Along Y (m) Position Along Y (m) Position along Y (m)

Hazard Detection & Avoidance
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Angular Rate Measurements
Acceleration Measurements

[ 4
= HINDER Signal
: RADAR EEEEEEEEEEEEEEEEWw ProceSSing

"eammmEEEmssEssssEsssEEssann, L

Visual b Distance-to-Ground

Navigation o Measurement

Ground "
Image Referencing Ground Referenced & : [Dielectric Const.

& Sampling Resampied Imags i M— Guidance

Precision Safe Navigation Commands

I:I Hazard Detection & Avoidance Motion :
Corrected Hazard Map Sites States

LIDAR Shadow Position Guidance

| I LIDAR Sensor-Level Processes .
Raw A Posteriori Data Resampling & | Hazard Map | Measuring

LIDAR Dat : .
[] 6NC including Divert Guidance Sopd a Comensation | Interpolation oS ETSRnica!
& Ground —1 Hazard Map

Referencing Fuel Navigation Control

D Sensors and Actuators
—] Hazard Map
- Control

- HINDER Instrumentation System Divert Commands
Erosion Map

- HINDER Divert Analysis Algorithms Fusion 0> Lander :0

Propulsion

Neighboring

e JAVAYA

Navigation Identification
States

IMU

FERN
fnmmnm

Hazard Detection & Avoidance
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Signa! g Rg;f::gng Dielectric Const e
Processing & Sampling ";::sx:
----------------------------- LIDAR | | Comencation {Resampling & Trsstl:;g:rgai‘n:::al
: : R%fgrr:ncr;:g : ::::F;:eE:: | Navigation
Hazard Map Neighl;oring : ki ."L;';jj.i';rr’].'f: [
Shadow go2fe Site sS88
. Hazar d Ma entification
Topographical
—1 Hazard Map
/L";\T = Hazard Map:
5 * HINDER iptegrqtes into the lander by
Fusion | adding dielectric constant hazard map
Neighboring and divert analysis map to existing
Safe Sit I 1
e She. hazard map suite in C&DH
. * All hazard maps go through sensor
| HIROER Insirumentation System fusion process to create fused hazard
- HINDER Divert Analysis Algorithms map

Hazard Detection & Avoidance
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Safe Site
Identification
Stie.s Guidance
JEEEN .--J-- EEEEEN ContrOI =
: : | Navigation EE
" Reference e Commands
1 B
E TrajeCto ry : HEEEEEEEN EEEEEE - (D P}:’;‘lﬂgron @
. 0
. Updated > u JAYAYAY
- Safe Site s * | Fcs commands & | »
n . s Generation .
n .
. Trajectory- ’ - : GNC SYSTEM:
- Generation - e =
e . .
- Updated : : ot Fuseql maps used for safe site
. Trajectory . : identification.
" - " Navigation 4 : = . . . .
. | ReferenceState | . states - fralcetony » « Data is used for guidance, navigation and
" Computation e = Tracking . control
n " .
: : : :
i H B B BB EEEEEEEEN .- H E EEEEEEEEEEEN ‘ o M M : . M
Navigation Cuidance HINDER is integrated with existing

GNC system.

Hazard Detection & Avoidance
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Report Next
Dielectric Beam
Constant

* HINDER’s Hazard Avoidance & Detection initiates at ~490m altitude
* Below 490m altitude, radar resolution is better than that of LRO

* Measurements taken continuously update a dielectric constant hazard map
* Radar measurements verified accurate already

Hazard Detection & Avoidance
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* Purpose: Avoid hazards and change target landing site
* Dielectric constant map inform of site vulnerability to PSI
* Gap: Map to inform of path vulnerability to PSI

First Priority
Site

il

Position along X (m)

Second Priority
Site

'29300 -100 0 100 200
Position along Y (m)

Hazard Detection & Avoidance @
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Validated Roberts’ Model simulation with experimental cratering results
in vacuum conducted at UIUC

‘\ Static Nozzle - Simulation - Post Crater Overlap

0.00 {

—0.01 ~

—0.02 A

Vertical Position (m)

—0.03 1

—0.04 4 * Lab Results \
—— HINDER expansion /\
Standard Model vy

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Horizontal Position (m)

b) Simulation vs Lab Results
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= A

= = <

Use vector algebra to obtain values relative th> nozzle
for Roberts’ Model. Need to find § and 6

Where f is the local slope in the plane intersecting the
nozzle centerline and pointi.e.

dy |2y

dr |E|

tanf =

And 0 is the azimuth angle which changes as the
nozzle moves

Simulation Demonstration

Yo ) 210 W

Sit;
IOn (m) 10

Hazard Detection & Avoidance
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ivert Erosion Map

at 50h/D
F -

* Developed erosion hazard map simulation
tool using Roberts' Model

* Calculates and updates map of total
volumetric erosion for each landing site
over the course of descent

Z position (z/D)
Volumetric Erosion

_so

10 30 50

. . . . . =50 30 -1
* Magnitude and distribution of erosion depend X positon (XD)
. . L Updates during
on lander height and surface characteristics descent
. . . . 50 Divert Erosion Map at 10h/D
* Continuously informs lander of which landing

0.6

F

sites are most optimal 30

* Can be expanded upon with increased
accuracy using more advanced software
* POST2
* NASA MSFC's Loci-CHEM GGFS tool

Z position (z/D)
Volumetric Erosion

=30 -10 10 30 50

X position (x/D)

Hazard Detection & Avoidance
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200

* Begins at ~490m altitude

-
(4]}
o

* Bulk density and divert induced erosion
map are fed into the VPU to form a single
fused hazard map

* Demonstrated divert induced hazard map as a
proof of concept using rapid modelling

—
g O
o O o

o
=)

Position along X (m)

-100
* The final fused map is used to select a 150

landing site and guides the lander using 200 I— .

existing GNC systems Position along Y (m)

Hazard Detection & Avoidance



Phase 4: Ascent
>0m

Phase 3: Surface
Measurements
<30m
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* Additional data collection as
opportunity provides
* Instrument may be vulnerable to damage

* Measure PSI impacts on local geology
* Before and after comparisons post-flight

* Compare measurements on the ground to
in-situ measurements by crew

e Small area of focus

* Area of maximum impact is known

* Revisit potential on ascent for points
measured on descent

Mission Assessment
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Risk Informed Decision Making

5 5
g 4 g 4
S b=
= 3 » 3 3
2 2
a 9 - 2

1 1

1 2 3 4 5
Consequence Consequence
L S L N [T

Funding Flexible tiered Development on different phases are done in
reduced development approach parallel and independently

2 Radio Sensor uses harrow Antenna is designed based on a frequency band,
interference beam K-band radar subject to change with further development

3 Testing Failure  Can operate in passive  The first implementation of the radar instrument

data collection mode will be fully separated from the flight controls

Mission Assessment
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* Two estimates are created using existing Nasa tools

 Uses mass and power-driven cost estimation relationships (CERs) based on heritage
instrument development

* Lower bound: 1.36 million USD
* Upper bound: 12.78 million USD

HINDER COST BREAKDOWN HINDER SAND CHART

2000
$1,301

1800
1600

1400

$642

53
f=3
(=]

Cost ($K USD)
S
S

800

600

400

200

0
QB Q4 Q1 Q2 Q3 Q4 Q Q@2 Q@8 4 Q4 Q@2 Q3 Q4 Q Q2 Q3 Q4

m Management = Sys. Engrg. Prod. Assurance |&T = Total Sensor 2024 2025 2026 2027 2028

® Design and Development ™ Fabrication ~ ®Integration and Testing

Mission Assessment
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D1vert Brosion iviap at 1vn/p

50

‘. “i 3
“‘ ol _3\ 30 0.8
P g 10 0.6é
. w i £-10 0.4+
't .1 | '-‘ -30 0.2
Using existing lunar Using an active phased Adding fused
data to select a array radar that hazard maps to
target landing site measures dielectric conduct diverts to
based on bulk constant to avoid high advantageous
density PSI susceptible sites landing sites

Mission Assessment
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P4

Apollo 17 Landing Site and Area of Activity

« Bowen-Apollo

Shakespeare gechise
Evas

! Victory Van Serg %5 3
.Shorty !
\“ff’f‘f Camelot
Hora;i?\‘ !

Trident \(\\

Bronté Powell»

1 4 Steno-Apollo
&

Emory
Mackin f
Hess-Apollo

Earth and Space Science, Volume: 6, Issue: 1, Pages: 59-95, First
published: 07 December 2018, DOI: (10.1029/2018EA000408)

Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) mosaic

Apollo 17 surface measurements allow remote estimates to be evaluated

Appendix ©] & %, 2 X & s 46
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Erosion Rate Models

- Robert’s and Metzger’s
models are equations used
to estimate soil erosion rate

- Both models can be
condensed to functions of
soil parameters

- Erosion rate can be
minimized by targeting the
site with the highest soil
bulk density

Roberts’ Model

V=—=¢C

dy 2(t —1%)
ot a-u-o-c-cos(B)
) b
Pb
dy
E = (D, pp, Acons Tcon @)

Metzger’s Model

Pb pprgB{D) + «a

V =f(pp,D, )

D = Particle Size

pPp = Bulk Density

pPp = Bulk Density

D = Avg. Particle Diameter

A on= Cohesion parameter

a = Cohesive Energy

Tcon= Cohesive stress

High TRL remote sensing

a = Internal friction angle

capabilities

Low TRL remote sensing

capabilities

No remote sensing

capabilities
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* On analysis, this model shows ApoIIo 17 Site Analysis :

inverse trend of ground data

* Demonstrates general map
characteristics and verification process

* Original model was verified on the
average value, not local trends

_c2 2 1.2 ,1 .2 * Anistotropy Model |
0o = Sl + SZ - E 53 + E 54 —== Linear Regression
W 34 —— True Value
2

2+ 1/ 30'00'

A=

!

11
g = ——2A+1‘

1+‘
A 21A
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Dielectric Constant

Bulk Density (g/cm3)
2

Bulk Density
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Bhattacharya et HINDER
al. (2015) [18] Anisotropy Model

Dielectric Constant
Dielectric Constant
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Phased Array | Phased Array Single Single Real
Synthetic (PA) Real Synthetic Aperture
Aperture Aperture Aperture

PA-SAR PA- Ground Scatterometry
Scatterometry Penetrating
Radar
Beam Digital Digital Mechanical Mechanical
Steering
Power High Medium Low Low
Consumption
TRL 8 8 6-9 7

A Phased Array Scatterometry radar operating mode is selected
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Frequency 2-30 GHz 30-300 GHz 0.4-400 THz

Wavelength cm mm Hwm
Scale

Low Medium High

Ground/Dust High Low/None None

Low Frequency | High Frequency | Optical/Infrared
Radar Radar Laser

Penetration

Transmitter High Medium Low
Size

A relatively low-frequency band is selected for high ground and dust penetration
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Table 2: Key Instrument Parameters

Parameter

Frequency

Antenna Size

Beam Steering

Array Beamwidth

Number of TX/RX Elements

Total Power Consumption
(with Avionics)

Pulse Width

Transmit Power

Value

24 GHz (K-Band)
0.36 x 0.36m (14 x 14in)

Active Electronically
Scanning Array (AESA)

3.1°-3.5°
(0°-30° Beam Direction)

1024

20W

1ns

115 dBm

Antenna Closeup
* Element Width: 5mm

: A
* Element Spacing: 2
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* HINDER joins NASA initiatives in leveraging

Commercial-off-the-Shelf (COTS) systems to e N e

find more cost-effective development paths Pa'*'w@w

* Taking advantage of the abundance in analog = =
testing conducted in the real-world I J Stop & Go {fzShz)
. . (24GHz)

* AUtomOtlve radar.s Operqtlng Gt 24 GHZ used Freq. BW | Modulation | Angle | Range | Resolution | Application

for hazard detection on the ground level were anort  |2soHz| 76Hz | Pused | 70 | tom | <tocm | Sigecrasn

examined T (7 m i -

* Signal processing hardware and methods can be
leveraged for robust hazard detection uses in space

* HINDER uses automotive COTS components
and design approaches to increase
performance and reliability at a lower cost
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Advantages:

* Top is typically where
majority of instrumentation is

integrated
* Simpler to harness
60° * Out of the way of any
FOV landing-mechanisms (leg

deployments, propulsion, etc)

Disadvantages:

* Antenna must be angled
further away from the lander
for the structure to not
interfere with the FOV

* May impact vehicle dynamics
as the top is far from the CG

*Antenna made bigger (2:1 scale) everywhere
on the slide for visual demonstration purposes
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Advantages:

* Top is typically where
majority of instrumentation is
integrated

* Out of the way of any
landing-mechanisms (leg
deployments, propulsion, etc)

Disadvantages:

* Landers are typically sized to
their launch vehicles’ fairings,
and an extended bracket
might exceed size limits

*Antenna made bigger (2:1 scale) everywhere
on the slide for visual demonstration purposes
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Advantages:

* Unobstructed FOV

* Close to CG thus minimizing changes
in vehicle dynamics

Disadvantages:

* Must integrate near critical propulsion
and thermal systems
* CLPS landers, such as Firefly’s
Blue Ghost, might have a
radiator and TPS on the bottom
of the structure which cannot be
obstructed.
* More difficult to harness on HLS
landers

*Antenna to-scale (1:1) everywhere on this slide
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Simulation Demonstration




HINDER |

UNIVERSITY OF

* Plotted Erosion Rate vs. Height using
Robert's Model

o Pressure chambers determined from
previous lunar missions [30]

* Negligible Erosion above 100 h/d

* Conclusions supported by Marshall
Space Center's work for Firefly
Aerospace [7, 31]

0.200 Erosion Rate vs Height
0.03MPa
0.175 —— 0.21MPa
0.150 — 0.27MPa
= —— 0.45MPa
§0125* —— 0.64MPa
5001007 —— Apollo LDM: 0.82MPa
& —— 0.82MPa
§0.075 —— 2.12MPa
& —— 341MPa
= 0050 —— 4.71MPa
0.025 —— CE-20: 6.0MPa
0.000
10" 10°

Height (h/d)




