Holistic Integration of Navigational Dynamics for Erosion Reduction

The Grainger College of Engineering UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

> Faculty Advisor: Dr. Laura Villafañe Roca Graduate Student Advisor: Nicolas Rasmont

Adam Pawlik | Shikhar Kesarwani | Ishaan Bansal Brody Lauer | Benjamin Ochs | Galen Sieck Aparna Kamath | Cliff Sun| Krisha Mahajan Sahilkrishna Vazhatodhyil | Chen Li | Ethan Kooper

Overview

- Theme
 requirements
- State of the art and technology gaps
- Value Proposition

Concept of Operations

- Target site selection
- Hazard relative navigation

0

- Hazard detection and avoidance
- Surface measurements

2)

Integration

- HLS Integration
- Configurations

Mission Assessment

- Architecture timeline
- Cost analysis
- Risk analysis

HINDER PSI BACKGROUND AND IMPACTS

8

What is PSI

- Interaction between lander exhaust and planetary surfaces
- Leads to adverse effects such as visual obscuration and lander instability
- Proper management of PSI is crucial to prevent damage to mission critical equipment and enhance overall safety of lunar expeditions

Lander Safety

- Surface visibility obscured
- Plume recirculation
- Uneven surface erosion

Architecture Sustainability

 Damage to nearby hardware

8

 Soil modified for next mission

Scientific Interests

- Contamination of the surface and exosphere with volatiles
- Local morphological changes

- Goal: Quantify relative PSI vulnerability
- Site selection is based on rapid modeling
 - Insufficient data for high fidelity models
 - Broad trends, not fine optimization
- Geotechnical properties
 - Particle size
 - Particle shape
 - Bulk density
 - Cohesion
 - Permeability

PSI surface erosion scales inversely with surface bulk density based on rapid models

"In light of NASA's Artemis III mission [...], here we utilized radar observations from the **Miniature Radio Frequency (Mini-RF) instrument** on board LRO to characterize this South Pole crossing ray. Radar observations can [...] **constrain bulk density** and composition (i.e., dielectric permittivity)." -Rivera-Valentín et. al, 2024

"Combined, these datasets can characterize the radar scattering properties of the lunar surface [...] and are uniquely valuable for **identifying landing hazards and constraining the dielectric properties** [...] of regolith within the Artemis landing zones." -Patterson et. al, 2023

8

Bulk density can be estimated using dielectric constant with radar

X

•••

HINDER STATE OF THE ART

PSI Sensors

PIE Impact Sensor

Ejecta STORM Laser Scattering

DERT mm Wave Doppler

S

SCALPSS Stereo Camera

SEAL Mass Spectrometer

Technical Gap: Preventative action prior to the onset of PSI

Navigation and Hazard Avoidance

- Active terrain relative navigation (TRN)
 - Camera images of the surface
 - Active lidar measurements
- Landing within 100m of a target
 - Requirement set for HLS
 - Demonstrated by the JAXA SLIM lander
- Interest in diversifying Precision Landing & Hazard Avoidance (PL&HA) capability
 - Lidar & radar, multi-function sensors

Technical Gap: PSI relevant hazards and navigation

HINDER addresses gaps in PSI and PL&HA sensors

HINDER DEVELOPMENTAL TIMELINE

2024: **Exploratory Phase**

Concept and Technology Development

Focus in on PSI model research and radar component selection

Initial prototyping of hardware and software

TRL 1-3

Pathfinder Experiments and Product

2025-2027:

Foundational

Phase

Ø

Pathfinder is developed and tested on terrestrial lander testbeds. Preliminary results

used for developing a precursor mission.

Precursor launch on Artemis III with the sensor in data collection mode

TRL 4-8

2028:

Operational Phase

HINDER's performance from Artemis 3 is evaluated and necessary design changed are made

The final iteration is integrated into Artemis IV with full operational capability

TRL 9

HINDER will launch a precursor mission on Artemis III, with a full-scale mission on Artemis IV

- Problem: Apollo experience cannot be extrapolated to HLS
- Response: Define a high-level approach which can be applied to other models
 - Demonstrate the concept using Apollo era experience and data
 - Use Roberts' Model as a preliminary rapid model of higher altitude effects
- Assumptions: Volumetric erosion rate decreases with increasing bulk soil density

Ø

Roberts' Model

$$\frac{\partial y}{\partial t} = \frac{2(\tau - \tau^*)}{a \cdot u \cdot \sigma \cdot c \cdot \cos(\beta)}$$

Simple, rapid Apollo era models are used for concept demonstration

Phase 0: Preliminary Site Selection Conducted prior to launch

 \bigcirc

- Selected from 13 candidate regions
 - Multiple sites per region
 - Unprepared sites
- Selection factors
 - Accessibility (timing dependent)
 - Terrain slope
 - Line of sight to Earth
 - Lighting conditions
 - Gap: PSI vulnerability

Artemis Candidate Landing Regions, Image from [34]

A target landing site can be selected to reduce PSI vulnerability

- Top models are sufficient for hazard detection
 - High performance models have reported errors <5%
 - Dielectric constant range of >30%
 - Insufficient for fine optimization within about 5% variation
- Proof of concept
 - Two simple models selected for demonstration
 - Full implementation should use a higher accuracy model

Ø

00

Dielectric Constant Model	Source	Reported Error
Fresnel Reflection Coefficients	Kumar et. al, 2022 [14]	< 3% (6 samples)
Modified Campbell Inversion	Calla et. al, 2013 [15]	< 20% (5 samples)
Co-Polarization Ratio	Singh et. al, 2022 [16]	N/A
Hybrid Polarimetric Scattering Similarity	Gao et. al, 2023 [17]	~10% (16 samples)
Symmetric Coherency and Anisotropy	Bhattacharya et al. (2015) [18]	N/A

- Applied to preexisting data
 - Mini-RF: Lunar Reconnaissance Orbiter and Chandryaan-1
 - Near global coverage at 30m/pixel
- Demonstrated using data over the Apollo 17 site
 - In-situ measurements can be used to verify the accuracy of the model

$$\sigma^0_{LH} \approx \frac{1}{2}(S_1 + S_2)$$
 $\sigma^0_{LV} \approx \frac{1}{2}(S_1 - S_2)$ ϕ : Look angle

$$\varepsilon' = \left(\frac{\sin[\phi]}{\sin\left[\cos^{-1}\left(\frac{\sigma^{0}_{LH}}{\sigma^{0}_{LV}}\right)^{0.25} - \phi\right]}\right)^{2}$$

Ø

0

Apollo 17 Site Analysis

The modified Campbell model can be used as a proof of concept

Ø

シリ

•••

- Performed on Earth, prior to mission launch
 - Use pre-existing data from lunar orbiters
 - Suggested by members of the Mini-RF team for scientific purposes
- Use bulk density estimates to identify PSI hazards in a landing region
 - Apply more accurate dielectric constant estimation methods
 - Estimated >25% variation in bulk density within 1km diameter

Ø

00

- Requires minimal changes to HLS
 - Fast and at low cost

Phase 1: Hazard Relative Navigation

HINDER STATE OF THE ART

PL&HA Sensors

NDL

Technical Gap: Enabling real-time preventative action

Ø

Navigational Doppler Lidar

HDL Hazard Detection Lidar

SPLICE Computer for PL&HA processing

Sensor suite for PL&HA

0

Navigation and Hazard Avoidance Gaps

• Terrain Relative Navigation

• Active terrain sensing to enable TRN and hazard detection during descent over dark, shadowed, or illuminated surfaces

Sensor Capabilities

- New technological advancements in radar & lidar, multi-function sensors, reductions in SWaP (size, weight, and power)
- Facilitate technology transfer and invest in commercial solutions

Technological Gap: hazard detection and terrain relative navigation

HINDER addresses technological gaps existing in NASA's PL&HA and HDA sensor suite

HINDER INSTRUMENTATION TRADE STUDIES

	Radar	Lidar	Optical Cameras	
Accuracy in Dielectric Constant Measurement	High	Low	Low/None	
Penetration Depth	Moderate	Low	None	
Resolution	Moderate-High	High	High	
Weight & Power Requirements	Moderate	Low	Low	
Data Processing Complexity	Moderate	Low	Low	
Integration Capability with Trajectory Profile	Moderate	High	High	
Operation-ability in dark/illuminated/ shadowed regions	High	High	Low/None	

Radar is selected over other technologies due to heritage in dielectric constant measurements

Ļ

•••

00

Ø

Hazard Relative Navigation

HINDER RADAR DESIGN REQUIREMENTS

Instrument Performance Requirements

Parameter	Identifier	Value	Notes
Maximum Altitude of Operation	А	~1000+150m (15% margin)	Begins with HRN initiation
Minimum Altitude of Operation	В	0.33m	Lowest payload height
Min. Radar Spot Diameter at 50m Altitude		3.5m	Blue Ghost's Diameter; Smallest US-based lander
Minimum Field of View	С	60°	
Hazard Relative Navigation 🚳 🔗	🐒 🥙	X 🧳 💼	21

HINDER RADAR EXAMPLES

00

Ø

					NASA Lako
	DERT	MSL TDS	Starlink Gen. 2	HINDER Radar	Dust Ejecta Radar Toobhology
Frequency	94 GHz	36 GHz	15 GHz	24 GHz	(DERT)
Power Usage	2.6 W	5-20 W	50-75 W	20 W	NASA JPL Mars
Beam Width	16 deg	3 deg	0.1-3.5 deg	3.5 deg	Science Laboratory Terminal Descent Sensor (MSL TDS)
Transmit Power	24.5 dBm	33 dBm	35 dBm	115 dBm	TDS Antennas TDS Transmit / TDS RF Receive Modules Electronice Stack TDS Digital Electron
Antenna Size	Ø2cm	Ø 20 cm	Ø 41 cm	□ 36 cm	HINDER Radar
Steering	None	None	AESA	AESA	Sensor

ļĢ

- Radar aptly designed for integration ease and flexibility
- Multiple potential integration points aboard lander for stakeholder to choose
- Bracket and integration procedures follow closely to that of SCALPSS

- Measurements begin at ~1000m altitude
 - Similar to other Hazard Detection instruments
 - Calibration from 1000m-490m altitude
- Real-time data is verified against existing data
 - Signal processing filters out abnormal data

Ø

•••

Radar POV with Overlayed Dielectric Constant Map

Ø

0

LRO Map from equivalent location

- Begins during at ~1000m altitude
 - Majority of PL&HA instruments initiate concurrently
- Use phased-array radar to match obtained data to existing LRO data
 - Done for verifying nominal radar operations
 - Used as an additional method of terrain relative navigation
- Requires integration of L-SWaP Phased-Array radar

• Relatively moderately-sized payload for CLPS

Ø

Small payload for HLS

Phase 2: Hazard Detection and Avoidance 490m-30m

The Hazard Detection & Avoidance (HDA) sensors aboard HLS detect:

- Craters
- Steep Slopes
- Boulders
- Other physical obstacles

HDA does NOT consider geotechnical variations of potential landing sites that can affect cratering and ejecta

0

Ø

Current Technology:

- Limited resolution of data before flight
- Sensors
 - \circ Optical Cameras
 - $\circ \, \text{Lidar}$
 - Inertial Measurement Units (IMU)

 \bigcirc

8

Advancements:

- More hazard maps needed for sensor fusion process
 - Computing methods translate sensor data into hazard maps
 - Hazard maps are cost maps intended to continuously update and choose safest landing site

Scan #2: Lidar Scan

Scan #2: Camera Image

- Multitude of HDA sensors fuse data together
- Creates a more accurate model of landing terrain

Ø

• Fused map is used to select final landing site at lowest "cost"

Ø

HINDER ARCHITECTURE AND OPERATIONS

0

Ø

HINDER Instrumentation System

HINDER Divert Analysis Algorithms

Hazard Map:

- HINDER integrates into the lander by adding dielectric constant hazard map and divert analysis map to existing hazard map suite in C&DH
- All hazard maps go through sensor fusion process to create fused hazard map

Safe Site Identification

Reference

Trajectory

Trajectory-

Generation

Reference State

Computation

Navigation

Updated

Safe Site

Updated

Trajectory

Navigation

Ø

States

HINDER ARCHITECTURE AND OPERATIONS

Control

FCS Commands &

Generation

Trajectory

Tracking

Guidance

00

GNC SYSTEM:

- Fused maps used for safe site identification.
- Data is used for guidance, navigation and control.
- HINDER is integrated with existing GNC system.

UNIVERSITY OF

- HINDER's Hazard Avoidance & Detection initiates at ~490m altitude
 - Below 490m altitude, radar resolution is better than that of LRO
- Measurements taken continuously update a dielectric constant hazard map
 - Radar measurements verified accurate already

Ø

- Purpose: Avoid hazards and change target landing site
- Dielectric constant map inform of site vulnerability to PSI
- Gap: Map to inform of path vulnerability to PSI

Validated Roberts' Model simulation with experimental cratering results in vacuum conducted at UIUC

a) UIUC PSI Testing Vacuum Chamber

Ø

00

b) Simulation vs Lab Results

Use vector algebra to obtain values relative to nozzle for Roberts' Model. Need to find β and θ

Where β is the local slope in the plane intersecting the nozzle centerline and point i.e.

$$\tan \beta = \frac{dy}{dr} \approx \frac{\left|\overline{\Delta y}\right|}{\left|\overline{\Delta r}\right|}$$

Ø

0

And θ is the azimuth angle which changes as the nozzle moves

Simulation Demonstration

Moving nozzle for 0.5s then Static for 0.5s

- Developed erosion hazard map simulation tool using Roberts' Model
- Calculates and updates map of total volumetric erosion for each landing site over the course of descent
 - Magnitude and distribution of erosion depend on lander height and surface characteristics
 - Continuously informs lander of which landing sites are most optimal

- Can be expanded upon with increased accuracy using more advanced software
 - POST2
 - NASA MSFC's Loci-CHEM GGFS tool

 \bigcirc

- Begins at ~490m altitude
- Bulk density and divert induced erosion map are fed into the VPU to form a single fused hazard map
 - Demonstrated divert induced hazard map as a proof of concept using rapid modelling

• The final fused map is used to select a landing site and guides the lander using existing GNC systems

Ø

- Additional data collection as opportunity provides
 - Instrument may be vulnerable to damage
- Measure PSI impacts on local geology
 - Before and after comparisons post-flight
 - Compare measurements on the ground to in-situ measurements by crew
- Small area of focus
 - Area of maximum impact is known
 - Revisit potential on ascent for points measured on descent

Ø

Ø

2

5

4

Risk Informed Decision Making

ID	Risk	Mitigation	Design Impact
1	Funding reduced	Flexible tiered development approach	Development on different phases are done in parallel and independently
2	Radio interference	Sensor uses narrow beam K-band radar	Antenna is designed based on a frequency band, subject to change with further development
3	Testing Failure	Can operate in passive data collection mode	The first implementation of the radar instrument will be fully separated from the flight controls

ッ

Ļ

HINDER COST BREAKDOWN AND TIMELINE

Two estimates are created using existing Nasa tools lacksquare

8

Ø

- Uses mass and power-driven cost estimation relationships (CERs) based on heritage instrument development
- Lower bound: 1.36 million USD
- Upper bound: 12.78 million USD •

• • •

HINDER COST BREAKDOWN

Ø

Using existing lunar data to select a target landing site based on bulk density Using an active phased array radar that measures dielectric constant to avoid high PSI susceptible sites

Z

• • •

Adding fused hazard maps to conduct diverts to advantageous landing sites

Holistic Integration of Navigational Dynamics for Erosion Reduction

The Grainger College of Engineering UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

> Faculty Advisor: Dr. Laura Villafañe Roca Graduate Student Advisor: Nicolas Rasmont

Adam Pawlik | Shikhar Kesarwani | Ishaan Bansal Brody Lauer | Benjamin Ochs | Galen Sieck Aparna Kamath | Cliff Sun| Krisha Mahajan Sahilkrishna Vazhatodhyil | Chen Li | Ethan Kooper

Apollo 17 Landing Site and Area of Activity

Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) mosaic

Ø

00

Earth and Space Science, Volume: 6, Issue: 1, Pages: 59-95, First published: 07 December 2018, DOI: (10.1029/2018EA000408)

Apollo 17 surface measurements allow remote estimates to be evaluated

HINDER BULK DENSITY ESTIMATION METHOD

0

╝

Ø

Erosion Rate Models

- Robert's and Metzger's models are equations used to estimate soil erosion rate
- Both models can be condensed to functions of soil parameters
- Erosion rate can be minimized by targeting the site with the highest soil bulk density

Roberts' Model

$$\frac{\partial y}{\partial t} = \frac{2(\tau - \tau^*)}{a \cdot u \cdot \sigma \cdot c} \cos(\beta)$$

$$\frac{\partial y}{\partial t} = f(D, \rho_b, A_{coh}, \tau_{coh}, \alpha)$$

$$D = \text{Particle Size}$$

$$\rho_b = \text{Bulk Density}$$

$$A_{coh} = \text{Cohesion parameter}$$

$$\tau_{coh} = \text{Cohesive stress}$$

$$\alpha = \text{Internal friction angle}$$

Metzger's Model

$$\dot{V} = \frac{\dot{M}}{\rho_b} = C \frac{\rho_e v_e^2 A_e}{\rho_b g \beta \langle D \rangle + \alpha}$$

 $\dot{V} = f(\rho_b, D, \alpha)$

ρ_b = Bulk Density
 D = Avg. Particle Diameter
 α = Cohesive Energy
 High TRL remote sensing capabilities
 Low TRL remote sensing capabilities
 No remote sensing capabilities

- On analysis, this model shows inverse trend of ground data
 - Demonstrates general map characteristics and verification process
 - Original model was verified on the average value, not local trends

$$\sigma_0 = S_1^2 + S_2^2 - \frac{1}{2}S_3^2 + \frac{1}{2}S_4^2$$
$$A = \frac{2}{2 + \sqrt{30}|\sigma_0|}$$
$$\varepsilon' = \frac{1}{A} + \frac{1}{2}\left|\frac{1}{A} - 2A + 1\right|$$

Ø

0

Apollo 17 Site Analysis

Models which do not match ground data can be avoided

Appendix

Bhattacharya et al. (2015) [18]

Ø

00

╝

•••

	Phased Array Synthetic Aperture	Phased Array (PA) Real Aperture	Single Synthetic Aperture	Single Real Aperture
[Example]	PA-SAR	PA- Scatterometry	Ground Penetrating Radar	Scatterometry
Beam Steering	Digital	Digital	Mechanical	Mechanical
Power Consumption	High	Medium	Low	Low
TRL	8	8	6-9	7

A Phased Array Scatterometry radar operating mode is selected

1.

•••

劉

Ø

0

	Low Frequency Radar	High Frequency Radar	Optical/Infrared Laser	
Frequency	2-30 GHz	30-300 GHz	0.4-400 THz	
Wavelength Scale	cm	mm	μm	
Resolution	Low	Medium	High	
Ground/Dust Penetration	High	Low/None	None	
Transmitter Size	High	Medium	Low	

A relatively low-frequency band is selected for high ground and dust penetration

劉

1.

•••

00

Ø

Table 2: Key Instrument Parameters

Parameter	Value			
Frequency	24 GHz (K-Band)			
Antenna Size	0.36 x 0.36m (14 x 14in)			
Beam Steering	Active Electronically Scanning Array (AESA)			
Array Beamwidth	3.1°-3.5° (0°-30° Beam Direction)			
Number of TX/RX Elements	1024			
Total Power Consumption (with Avionics)	20W			
Pulse Width	lns			
Transmit Power	115 dBm			

0

Ø

•••

Antenna Closeup

- Element Width: 5mm
- Element Spacing: $\frac{\lambda}{2}$

• HINDER joins NASA initiatives in leveraging Commercial-off-the-Shelf (COTS) systems to find more cost-effective development paths

HINDER COTS

- Taking advantage of the abundance in analog testing conducted in the real-world
- Automotive radars operating at 24 GHz used for hazard detection on the ground level were examined
 - Signal processing hardware and methods can be leveraged for robust hazard detection uses in space

S

 HINDER uses automotive COTS components and design approaches to increase performance and reliability at a lower cost

Ø

	Freq.	BW	Modulation	Angle	Range	Resolution	Application
Short Range	24GHz	7GHz	Pulsed	70°	10m	< 10cm	Side-Crash Parking
Mid Range	24GHz	250MHz	FMCW	30°~60°	40m	~1m	Stop & Go
Long Range	77GHz	1GHz	FMCW	16°	150m	~1m	ACC

Ø

Advantages:

- Top is typically where majority of instrumentation is integrated
 - Simpler to harness
- Out of the way of any landing-mechanisms (leg deployments, propulsion, etc)

Disadvantages:

- Antenna must be angled further away from the lander for the structure to not interfere with the FOV
- May impact vehicle dynamics as the top is far from the CG

*Antenna made bigger (2:1 scale) everywhere on the slide for visual demonstration purposes

HINDER EXAMPLE INTEGRATION OPTION II

Ø

00

Advantages:

- Top is typically where majority of instrumentation is integrated
- Out of the way of any landing-mechanisms (leg deployments, propulsion, etc)

Disadvantages:

60

FO

 Landers are typically sized to their launch vehicles' fairings, and an extended bracket might exceed size limits

*Antenna made bigger (2:1 scale) everywhere on the slide for visual demonstration purposes

HINDER EXAMPLE INTEGRATION OPTION III

Ø

Advantages:

- Unobstructed FOV
- Close to CG thus minimizing changes in vehicle dynamics

Disadvantages:

- Must integrate near critical propulsion and thermal systems
 - CLPS landers, such as Firefly's Blue Ghost, might have a radiator and TPS on the bottom of the structure which cannot be obstructed.
- More difficult to harness on HLS landers

*Antenna to-scale (1:1) everywhere on this slide

Simulation Demonstration

Moving nozzle for 0.5s then Static for 0.5s

ッ

Į.

•••

00

Ø

- Plotted Erosion Rate vs. Height using Robert's Model
 - Pressure chambers determined from previous lunar missions [30]
- Negligible Erosion above 100 h/d
- Conclusions supported by Marshall Space Center's work for Firefly Aerospace [7, 31]

Ø

0

X

シ

