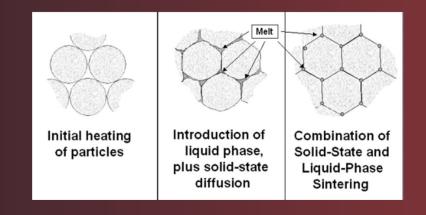

MOONPads:

Microwave-Sintering Operations Of Nanophase-Iron Pads

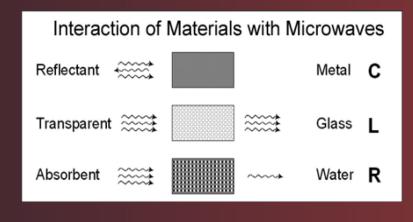
Advisors: Dr. Amy Eguchi, Dr. Zahra Sadeghizadeh, Dr. Ross E. Turner Authors: Sherry Tao, Brandon Vinh, Nafanil Ceshkovsky, Jason Chang



Microwave Sintering

Microwave Sintering

- Microwave Sintering fuses particles with microwaves
 - Volumetric heating process
 - Power efficient with absorptive materials
- Testing on lunar simulant JSC-1 shows:
 - Strong material properties
 - Thermal runaway behavior



Taylor, L. A., and T. T. Meek (2004)

Microwave sintering is a power efficient process which can result in strong material properties

Microwave Material Classification

- Microwave Material Classifications:
 - Reflectant
 - Transparent
 - Absorbent
- Large metal grain sizes are reflectant
- Small metal grain sizes are absorbent

Taylor, L. A., and T. T. Meek (2004)

Microwave interaction with iron varies significantly with grain size

Improving Microwave Sintering Data

- Smaller grain sizes in lunar regolith results in:
 - Faster heating rates
 - Inaccurate spatial profile of heating
 - Unknown composition and properties of final products
 - Different onset and location of thermal runaway
 - Unpredictable thermal gradients
 - Different heating risks

New simulants with accurate iron grain sizes improves validity of testing lunar sintering.

Microwave Sintering Path to Adoption

Timeline of Technological Maturation of Sintering Technologies

	Development of Lunar Simulant with Nanophase Iron	F	Component Testing of Magnetic Collection/ ïltration System		Rover Prototype Tested in Cold Vaccum with new Lunar Simulant		Rover Delivered to the moon
TRL4	TRL4		TRL5		TRL 7		TRL 9
•		TRL5		TRL 6		TRL 8	-
		Component Testing of		Combined Microwave Sintering	g	Scaled down Rover Prototype	
		Microwave Sintering of new Lunar Simulant		and Magnetic Filtration Test in cold vacuum		delivered to the moon for testin	

Proposed Applications of Regolith Sintering

- NASA selected *Redwire* in 2023 to develop sustainable lunar architecture:
 - Landing pads
 - Roads
 - Foundations for habitats (horizontal infrastructure)

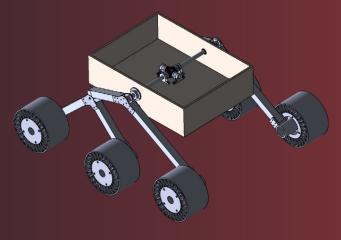
Redwire Corporation (2023).

Proposed Applications of Regolith Sintering

- Moon-to-Mars Planetary Autonomous Construction Technology (MMPACT) at NASA Marshall is developing lunar regolith densification methods:
 - Processes:
 - Laser-and Microwave-sintered processes
 - Regolith melting/forming
 - Materials:
 - Cementitious
 - Geopolymer/Polymer
 - Thermosetting materials

(MMPACT @ Marshall Space Flight Center)

(MMPACT @ Marshall Space Flight Center)


Rover Design

Design and Configuration

Rover Design

Part	Dimensions (cm)
	``´
Bottom	150 x 40 x 0.3125
Front	40 x 56 x 0.3125
Back	25 x 40 x 0.3125
Sides (x2)	200 x 25 x 0.3125
Тор (х2)	400x 40 x 0.3125

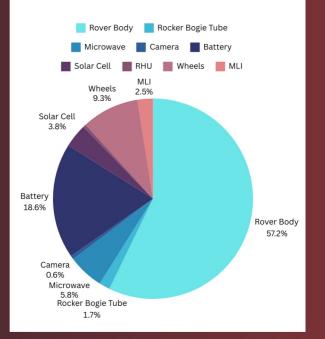
- Aluminum 6061 T6 for body and leg tubes
- Microwave material Titanium grade 5

GrabCad (2019)

Other technologies and instruments required

- Plutonium 238 Radioisotope Heating Unit
- Multi-layer insulation
- Autonomous and manual movement software
- Cameras
- Communication antennas
- Specialized wheels

SpaceFlight Now (2020)



National Air and Space Museum (2021)

Aerospace Fabrication (2024)

Weight Breakdown

Part	Weight (kg)*
Rover Body	24
Rocker Bogie Tube (2)	0.7
Microwave	2.4
Camera	0.25
Battery	7.8
Solar Cell	I.6
RHU	0.2
Wheels (4)	3.9
MLI	1.05
Total	41.9

*Truncated Values

Cost Breakdown

Part	Cost (USD)*
Rover Body	871
Rocker Bogie Tube (2)	652
Microwave	554
Camera	4000
Battery	167
Solar Cell	1000000
RHU	6560000
Wheels (4)	8000
MLI	1313
Total	7575447

*Rounded to the nearest dollar

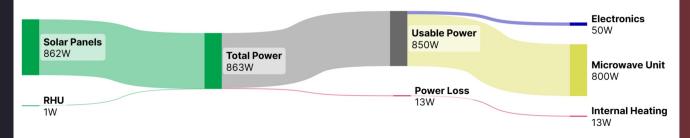
Power Storage and Generation

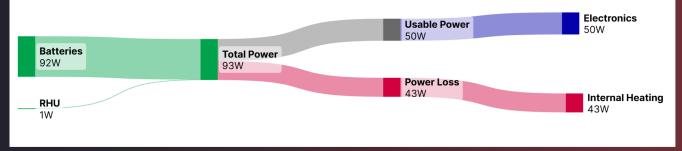
Solar Panels

- I m x 2 m triple-junction solar panel
- Nitinol wires for shaping and

ESA (2007).

Power Storage


- Required 1200 Wh storage
- Lithium ion cylindrical batteries


Eaglepitcher (2024).

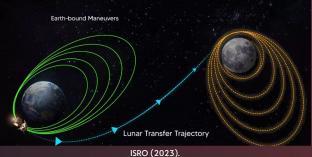
Power Analysis

Daytime Recharging Power Usage

Nighttime Power Usage

Technical Management

Implementation and Schedule


CONOPS:

		Lunar	Lander	Mission Pr	ogress		
Translunar Injection burn to move towards Iunar orbit		0	Powered deorbital manuever to bring the landing system to the ground		Rover begins collection of nanophase iron		Sintering is completed and rover is moved or repurposed
LEO Orbit	Translunar Injection		Deorbiting Manuver		Nanophase Iron Collection		Post Operation Status
Launched into		Polar Lunar Orbit		Landing and System Deployment		Landing Pad Sintering	•
LEO orbit on aboard Starship or Vulcan-		Detachment from Starship or		Skycrane lowers sintering rover to		Rover begins sintering of Landing	
Centaur		Vulcan-Centaur		the ground and departs. Rover	Pad, completing 7 strips per synodic		
				deploys solar panels		lunar day	

This proposed CONOPS leverages demonstrated mission profiles whenever possible

CONOPS - Getting to the Moon

- Conduct translunar injection from LEO to Lunar Polar Orbit
 - Similar to planned Artemis missions
- Powered Deorbit Maneuver
 - Skycrane and Rover module utilize active propulsion systems to descend to the lunar surface
 - Rover deploys from the skycrane to minimize initial Plasma Surface Interaction (PSI) impacts
 - Once rover lands on the lunar surface, the skycrane departs to a safe distance

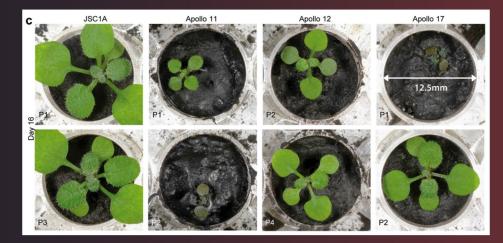
CONOPS - Lunar Operation

- Analyze the nearby area and identify a 30 x 30 m space
 - No large rocks or significantly uneven terrain
- Extract nanophase iron for enrichment
 - This step may be omitted
- Sintering occurs in cycles to match lunar light conditions
 - The solar panels will need to be undeployed during night-time conditions
- Sintering occurs in a line-based pattern, forming strips of landing pad
 - Sinters every other strip at first, to prevent heat damage from hot sintered regolith

CONOPS - Post-Lunar Operation

- Completion of the landing pad will allow the rover to power down
 - Solar panels returns to a closed configuration
- Alternatively, the rover can be moved off site to another landing site
- Rover can be repurposed by the crew for other microwave purposes
 - Cooking food as a house-like appliance
 - Sintering bricks for in situ resource utilization

Key components from the sintering rover can be reused for future lunar bases


Impacts & Effects

Past Technologies and Improvements

- Microwave sintering, compared to laser sintering:
 - Requires ~23% of the energy required for laser sintering
 - Significantly reduces fabrication time

Past Technologies and Improvements (cont.)

- Scientific:
 - Solid-support substrates for plant growth
 - Sources for extraction of plant-growth nutrients
 - Substrates for microbial populations of degradation of wastes
 - Sources of O2 and H2, which could be used to produce water

Paul et al., 2022.

Past Technologies and Improvements (cont.)

- Financial:
 - Decreased spacecraft maintenance and increased reusability
 - Reliance on required materials from Earth for infrastructure decreases
- Social:
 - Supports a growing amount of landings and launches to/from moon to support NASA's Artemis lunar exploration program

Conclusions

MOONPads

- Methods identified to fabricate lunar landing pads with autonomous rover
- **Rover designed** with size, cost, and weight constraints and necessary technologies
 - Risks and challenges identified with proposal
- CONOPS proposed for mission design, from launch to landing
- Impacts and effects of mission proposed

Thank You!

