TCNJ NASA HULC - HUMAN LANDER Challenge

MITIGATION OF LUNAR PLUME-SURFACE INTERACTION

Christian Katsikis, Aidan Wiehe, Matt Walsh, Harry Brier, and John Hardie

Advisor: Dr. Alabsi

Chris Katsikis

Aidan Wiehe

•

Matt Walsh

21

Project Description/Scope

- Overview of Problem
 - PSI (Plume Surface Interaction) The dust dispersal and erosion caused by the impingement of a rocket plume on regolith (unconsolidated rocky material over substrate or bedrock)
 - This poses significant risks to crew and existing surface infrastructure
- TCNJ Adaptable Regolith Retention Platform
 - Single-use, Deployable Landing Platform
- Proposal Categories
 - HLS Asset Safety (ejecta damage, excessive lander heating, etc.)
 - Reduction / Mitigation of Erosion and Ejecta during Descent, Landing, and Ascent

Figure 3.1: Lunar Landing Visual

Research and Proposed Solution

- Brainstorming Solutions (within TCNJ ability) to PSI problem
- Testing T.A.R.R.P. dust mitigation method
 - Creating a vacuum chamber
 - Using scaled rocket to produce simulant plume
 - Utilize depth camera to characterize dust plume

Fig 4.2*: NASA Run PSI 3D Simulation

*Images acquired from the research of Peter Liever and Jeff West at the NASA Marshall Space Flight Center

Initial Design Summary

- Śingle Use Design
 - Consumable Landing Platform
 - Inherently Unsustainable
- Intended to Provide a Temporary Solution
 - CLPS and HLS systems can deliver mission critical assets to surface
 - Increase service life of surface assets
- Mechanically Simple
 - Redundancies ensure proper function in event of a single asset failure

Fig 5.2: TAARP Animation

The TARP

* T.A.R.R.P. Concept

Top Surface

 \bullet

- Graphite Foil and Carbon Felt
- Baseplate and Fins
 - Carbon Matrix Carbon Composite material
- Hollow Aluminum Rods
- 17.3 ft unfolded diameter
 - Dimensions based on Apollo lander without landing gear

Fig 7.1: Decagonal Base Platform

*T.A.R.R.P. Deployment

- Torsional springs stored in compression released upon a controller signal
- Designed so when one fin falls, the remaining fins fall in sequence
- Selection of springs would be dependent on the size of the descent vehicle

Č,

Fig 8.1: TAARP Deployment Animation

Fin Locking System

Fig 9.1: TARRP Unlocked Position

Fig 9.3: Locking System Animation

Outer Diameter (in)	Length (in)	Deflection (in)	Spring Constant (lb/in)	Force (lb)	Max Force (lb)	Factor of Safety
0.72	1	0.2	243	48.6	72	1.48
0.72	1	0.2	165	33	55	1.66

T.A.R.R.P. Delivery Mechanism

- Assumed that a suitable landing zone would be identified prior to descent vehicle launch
- 2-Stage Delivery Mechanism
 - Housing Attached to the Exterior of the Descent Vehicle
 - Contains TARRP, Cold Gas Attitude Thrusters, and Solid Main Thrusters
 - Independent Guidance, Navigation, and Control
 - Radalt & Lidar Scanning Systems
 - Allows for proper orientation over desired landing zone
 - Upon reaching the surface, the TARRP will deploy and the HLS or CLPS will land
 - Attitude thrusters used to ensure housing mechanism clears landing zone prior to descent vehicle approach

Prototyping

- Two independent parts were 3D modeled and tested for compatibility.
 - Decagonal Base Plate
 - Ten Polygonal Fins
- Created to demonstrate the functionality of the TARRP.

Fig 11.1: 3D Base Plate Model

3D Printed Model

- Fully assembled expanded model is 11" in diameter
- Folded is 4.2" in diameter
- With carbon felt material attached to rods to fill in the gaps
 - Diameter expands to 16" across

Fig 12.1: Fully Expanded 3D Printed TARRP Model

Test Chamber

Vacuum Chamber Design

- 2x2x2ft vacuum chamber
 - Walls made entirely of clear 1" acrylic
 - Attached using epoxy 'Weld-On'
 - Additional silicone sealant
- Incorporates 0.1" rubber O-ring
 - Utilizes 4 C Clamps to properly seal front door
 - Lubricated with silicone gel

Fig 14.1: Vacuum Chamber

ANSYS Analysis of Vacuum Chamber

Fig 15.1: Vacuum Chamber Deformation

Fig 15.2: Vacuum Chamber Stress

Fig 15.3: Vacuum Chamber FoS

Static Deformation: 0.113 " Max Factor of Safety: 3.4 Min.

*Assuming Perfect Vacuum Conditions of **14.7 Psi***

Vacuum Chamber Access Port Design

- Using Klein Flange 16 attachment for the vacuum
 - Wire passthrough
 - Pressure gauge
 - Safety valve
 - Additional KF-16 input for potential future use

Fig 16.3: Access Port Assembly Fig 16.4: Access Port Assembly Exploded View

Thruster Mount Testing

- Video from Sony Alpha A7R IVA camera
- 16" Flame

- Measured with inch ticks on cardboard backdrop
- 1.5 second discharge

Figure 17.1: Set-up for Thruster Mount Testing

Data Collection

Scanning Systems Components

• Intel Realsense D435

- Max Resolution of 1920x1080
- Max Frame rate of 30fps
- NVIDIA Jetson Nano Developer Kit
 - \circ Al developer kit
 - Multipliple ports for device connection
 - Computer Vision

Fig 19.1: Intel Realsense Depth Camera D435

Fig 19.2: NVIDIA Jetson Nano Developer Kit

Scanning Systems Program

import cv2 import numpy as np	<pre>cv2.circle(bgr_frame, (point_x, point_y), 5, (255,255,0), -1) cv2.putText(bgr_frame, "{} mm".format(distance_mm), (point_x, point_y- 10), 0, 1, (255,255,0), 2)</pre>
<pre>import pyrealsense2 as rs from realsense_camera import * # Load realsense camera rs = RealsenseCamera()</pre>	<pre>#Point 4 (Normal Surface Scan point 3) point_x, point_y = 600,600 distance_mm = depth_frame[point_y, point_x] print(distance_mm)</pre>
<pre>while True: ret, bgr_frame, depth_frame = rs.get_frame_stream() #Point 1 (Plume surface impingement reading) point_x, point_y = 600,400 distance_mm = depth_frame[point_y, point_x] print(distance mm = depth_frame[point_y, point_x]</pre>	<pre>cv2.circle(bgr_frame, (point_x, point_y), 5, (255,255,0), -1) cv2.putText(bgr_frame, "{} mm".format(distance_mm), (point_x, point_y- 10), 0, 1, (255,255,0), 2) #Point 5 (Normal Surface Scan point 3) point_x, point_y = 600,200 distance_mm = depth_frame[point_y, point_x] print(distance_mm)</pre>
<pre>cv2.circle(bgr_frame, (point_x, point_y), 5, (255,0,255), -1) #Display the text for the depth measurement cv2.putText(bgr_frame, "{} mm".format(distance_mm), (point_x, point_y- 10), 0, 1, (255,0,255),</pre>	<pre>cv2.circle(bgr_frame, (point_x, point_y), 5, (255,255,0), -1) cv2.putText(bgr_frame, "{} mm".format(distance_mm), (point_x, point_y- 10), 0, 1, (255,255,0), 2) #Initilaize Colormap depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_frame, alpha=0.065), cv2.COLORMAP_JET)</pre>
<pre>#Point 2 (Normal Surface Scan point 1) point_a, point_b = 375,400 distance_mm = depth_frame[point_a, point_b] print(distance_mm) cv2.circle(bgr_frame, (point_a, point_b), 5, (255,255,0), -1)</pre>	<pre>#Display the resulting frames cv2.imshow("color Image", bgr_frame) cv2.imshow("Depth Colormap", depth_colormap) key = cv2.waitKey(1) if key == 27:</pre>
<pre>cv2.putText(bgr_frame, "{} mm".format(distance_mm), (point_a, point_b- 10), 0, 1, (255,255,0), #Point 3 (Normal Surface Scan point 2) point_x, point_y = 825,400 distance_mm = depth_frame[point_y, point_x] print(distance_mm)</pre>	2) Dreak Figure 20.2: Code Snippet 2

Figure 20.1: Code Snippet 1

•

 \bullet

Scanning Program Continued

Figure 21.1: Color Image output test

•

Figure 21.2: Depth Colormap output test

21

 \bullet

Scanning Systems Testing

- Conducted testing to gather images for MASK RCNN training.
- Tracking simulant regolith in a controlled testing environment.

Figure 22.1: Testing Apparatus

Figure 22.2: Air Duster

Figure 22.3: Top View of Regolith in Testing Apparatus

Fig 22.4: Active Testing

Scanning Testing Continued

Figure 23.1: Testing Demonstration

•

Machine Learning Dust Tracking System

- Object detection with Mask RCNN.
- Implementing a dust tracking system using Mask RCNN.
- Extremely fine particles resulted in chaotic response

Figure 24.1: Object detection demonstration

Simulation

Simulations

• ANSYS Simulations

- 2-Dimensional, Symmetric
 - Multiphase Euler-Euler
 - 15 30 mm Regolith Depth
 - 50 200 mm Nozzle Height
- 20 Total Simulations Run
 - 16 With TARRP
 - 4 Without TARRP
- Limitations
 - Assume Spherical Regolith Particles
 - TARRP Modeled as Stationary Boundary
 - Ignores Particle-Particle Interactions

Figure 26.1. Initialized Simulation Geometry With Patched Lunar Regolith

Simulations

Simulation Results

- Without TARRP
 - All four simulations run w/o TARRP completely evacuate regolith within 10 milliseconds
- With TARRP
 - All 16 simulations run for 2.5 seconds of simulation time.
 - Some regolith is still evacuated, however presence of TARRP significantly mitigates this
 - All simulations end with regolith remaining in chamber
- Conclusions
 - Simulation confirms that TARRP serves as an effective mitigation strategy for PSI
 - Recent research suggests that TARRP effectiveness could be enhanced by incorporating a slight incline to the terminal edges of the top surface

ASIN HASTI IS

Fig 30.1: In Chamber Test 1

Fig 30.2: In Chamber Test 2

In Chamber Testing

•

Fig 31.1: Thruster Mount Post Test 2

۲

Testing Modification for Data Collection

Fig 32.2: TARPP During Test

Findings

۲

 \bullet

Fig 33.2: Test 1 on TARRP

Fig 33.3: Test 2 on bare surface

Fig 33.4: Test 2 on TARRP

Fig 33.5: Test 3 on bare surface

Fig 33.6: Test 3 on TARRP

Table 34.1: Results

Constant fire height of 5" was maintained with a fire time of 5 seconds											
Average Central Impingement (mm)	Average Outer Deformation (mm)	Regolith Depth (mm)	<u>Test #</u>								
No Mitigation Tactics											
17.5 mm	N/A	27 mm	1								
17.25mm	N/A	27 mm	2								
19.75 mm	N/A	26 mm	3								
TARRP Covered Surface											
0 mm	6.25 mm	25 mm	4								
0 mm	10.5 mm	27 mm	5								
0 mm	15.75 mm	25 mm	6								

- With no mitigation tactics in place, an average impingement of 18.2mm was observed
- With the TARRP, 0mm of impingement was recorded at the heart of the plume.
- 10mm of average deformation were observed along the edges of the TARRP
 - Includes impingement and build-up

Future Design Recommendations

Vacuum Chamber:

- Increase Volume of Vacuum Chamber
- Larger Vacuum Pump
- Implement 'Trap-Door' Exhaust to Relieve Pressure
- Use silicone for O-rings

TARRP:

- Reduce Packed Volume of Platform
- Perform Material Analysis of Graphite Foil / Carbon Felt "Thermal Mesh"

Scanning:

• MASK RCNN Object Detection Training on Regolith Clouds

Budget & Pathto-Flight

NASA Proposal

Cost: \$593.5 M

Project Time: 2 yr. Size: 17.3 ft dia. Total Mass: 309.8 kg Total Volume: 2.42 ft³ Carbon Composite Volume: 1.736 ft³ Base Plate - 1.03 ft³ Rods - 0.660 ft³

Fins - 0.706 ft³

Carbon Composite Mass: 108.375 lbm

37

Fig 37.1: NASA Logo

Aluminum Volume:0.660 ft³

Aluminum Mass: 111 lbm

NASA Project Proposal Timeline

Task Title	Durration	Durration Phase 1																									
	(Weeks)	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15	Week 16	Week 17	Week 18	Week 19	Week 20	Week 21	Week 22	Week 23	Week 24	Week 25	Week 26
Material Validation	16																										
Design Optimization	20																										
Prototype Manufacturing	6																										
														P	hase 2												
		Week 27	Week 28	Week 29	Week 30	Week 31	Week 32	Week 33	Week 34	Week 35	Week 36	Week 37	Week 38	Week 39	Week 40	Week 41	Week 42	Week 43	Week 44	Week 45	Week 46	Week 47	Week 48	Week 49	Week 50	Week 51	Week 52
Prototype Manufacturing	13																										
Prototype Testing	16																										
Redesign	22																										
		Since 1 Sinc																									
		Week 53	Week 54	Week 55	Week 56	Week 57	Week 58	Week 59	Week 60	Week 61	Week 62	Week 63	Week 64	Week 65	Week 66	Week 67	Week 68	Week 69	Week 70	Week 71	Week 72	Week 73	Week 74	Week 75	Week 76	Week 77	Week 78
Prototype Manufacturing	19																										
Prototype Testing	15																										
Redesign	16																										
														P	hase 4												
		Week 79	Week 80	Week 81	Week 82	Week 83	Week 84	Week 85	Week 86	Week 87	Week 88	Week 89	Week 90	Week 91	Week 92	Week 93	Week 94	Week 95	Week 96	Week 97	Week 98	Week 99	Week 100	Week 101	Week 102	Week 103	Week 104
Redesign	14																										
Manufacturing	19																										
Testing	21																										
Implementation	12																										

Fig 38.1: NASA Proposed Gantt Chart

Project Budget

- Cost Estimation Made using NASA Project Cost Estimation Capability (PCEC) Software
 - \$593.5 M estimated budget
 - Includes 20% Reserve
 - 2 yr. Timeline to Final Prototype
 - 5 yr. Production Run
 - 12 Flight Total
 - 20 Production Units
 - Estimation Built Based on Launch Vehicle Template

INCH V	EHICI	LE WBS																
		Units Conversi	ion Factor:	1.000														
FY2025 \$	м	Inflat	tion Factor:	1.218	Dealers		Custom Test			_		_				_	701	Al million A
WBS #	Level	Line Item Name/Description		DDT&E	Develop		Hardware	Flight Unit	Prod	uction	Non-Allocated	Operations		TOTAL	Fee	Burden		Burden
0	1	System Name		\$ 280.0	\$ 2	69.1	\$ 10.9	\$ 17.9	s	214.6	\$ -	s .	\$	494.6	5		\$	494.6
1.0	2	Project Management		\$ -	\$		\$ -	\$ -	\$		s -	s -	\$		\$		\$	
2.0	2	Systems Engineering		\$ -	\$		\$ -	\$ -	\$		\$ -	s .	\$		\$		\$	
3.0	2	Safety and Mission Assurance		\$ -	\$		\$ -	\$ -	\$		\$ -	\$.	\$		\$		\$	
4.0	2	Science/Technology		s -	\$		\$ -	\$ -	\$		s -	s -	\$		\$		\$	
5.0	2	Payload(s)		\$ -	\$		\$ -	\$ -	\$		\$ -	\$.	\$		\$		\$	
5.0	2	Flight System \ Spacecraft		\$ -	\$		\$-	\$-	\$		\$-	s -	\$		\$		\$	
7.0	2	Mission Operations System (MOS)		\$ -	\$		\$ -	\$ -	\$		\$ -	\$.	\$		\$		\$	
3.0	2	Launch Vehicle/Services		\$ 280.0	\$	269.1	\$ 10.9	\$ 17.9	\$	214.6	\$ -	\$ -	\$	494.6	\$		\$	494.6
3.01	3	Launch Vehicle Management		\$ 44.8	\$	44.8	\$ -	\$ 2.7	\$	32.7	\$ -	\$ -	\$	77.5	\$		\$	77.5
3.02	3	Launch Vehicle Systems Engineering		\$ 28.2	\$	28.2	\$ -	\$ 3.1	\$	37.6	\$ -	\$.	\$	65.8	\$		\$	65.8
3.03	3	Launch Vehicle Product Assurance		\$ -	\$		\$ -	\$ -	\$	-	\$ -	\$ -	\$		\$		\$	
3.10	3	Launch Vehicle Stage		\$ 123.0	\$	112.0	\$ 10.9	\$ 8.4	\$	101.0	\$ -	\$.	\$	223.9	\$		\$	223.9
	4	Adapters		\$ 2.7	\$	2.4	\$ 0.3	\$ 0.2	\$	2.9	\$ -	\$ +	\$	5.6	\$		\$	5.6
	4	Secondary Structures		\$ 10.6	\$	7.2	\$ 3.4	\$ 2.6	\$	31.2	\$ -	\$ -	\$	41.8	\$		\$	41.8
	4	Mechanisms		\$ 40.6	\$	37.9	\$ 2.7	\$ 2.1	\$	24.6	\$ -	\$.	\$	65.2	\$		\$	65.2
	5	Thrust Vector/Flight Control		\$ 3.5	\$	2.9	\$ 0.6	\$ 0.5	\$	5.7	\$ -	\$ -	\$	9.2	\$		\$	9.2
	5	Separation		\$ 37.1	\$	35.0	\$ 2.1	\$ 1.6	\$	18.9	\$ -	\$.	\$	56.0	\$		\$	56.0
	4	Main Propulsion Systems		\$ 17.1	\$	16.3	\$ 0.9	\$ 0.7	\$	8.1	\$ -	s -	\$	25.2	\$		\$	25.2
	4	Thermal Protection		\$ 0.2	\$	0.1	\$ 0.0	\$ 0.0	\$	0.0	\$ -	\$ +	\$	0.2	\$		\$	0.2
	4	Propulsion		\$ 0.2	\$	0.2	\$ 0.0	\$ 0.0	\$	0.2	\$ -	\$.	\$	0.5	5		\$	0.5
	5	Solid Motors		\$ 0.2	\$	0.2	\$ 0.0	\$ 0.0	\$	0.2	\$ -	s -	\$	0.5	\$		\$	0.5
	5	Reaction Control/Orb Maneuv Sys		\$ 0.0	\$	0.0	\$ 0.0	\$ 0.0	\$	0.0	\$ -	\$ -	\$	0.0	\$		\$	0.0
	4	Avionics		\$ 28.0	\$	24.6	\$ 3.4	\$ 2.6	\$	31.6	\$ -	s -	\$	59.6	\$		\$	59.6
	5	Guidance, Nav, & Control		\$ 7.0	\$	5.5	\$ 1.5	\$ 1.1	\$	13.5	\$ -	\$ -	\$	20.4	\$		\$	20.4
	5	Telemetry & Tracking		\$ 4.4	\$	3.7	\$ 0.7	\$ 0.5	\$	6.3	\$ -	\$ -	\$	10.7	\$	•	\$	10.7
	5	CCDH		\$ 0.2	\$	0.2	\$ 0.0	\$ 0.0	\$	0.0	\$ -	s -	\$	0.3	\$		\$	0.3
	5	Range Safety		\$ 16.4	\$	15.1	\$ 1.3	\$ 1.0	\$	11.8	\$ -	\$.	\$	28.2	5		5	28.2
-	4	Electric Power		\$ 19.9	\$	19.7	\$ 0.2	\$ 0.2	\$	2.1	\$ -	\$ -	\$	22.0	\$		\$	22.0
	4	Shroud/Fairing		\$ 0.0	\$	0.0	\$ 0.0	\$ 0.0	\$	0.0	\$ -	\$.	\$	0.0	5		\$	0.0
-	4	Crew Systems		\$ 0.0	\$	0.0	\$ 0.0	\$ 0.0	\$	0.2	\$ -	5 .	\$	0.3	5		5	0.3
	4	Software		\$ 3.6	\$	3.6	\$ -	\$ -	\$	-	\$ -	s -	S	3.6	5	-	s	3.6
	5	Flight Software		\$ 3.6	8	3.6	\$ -	\$ -	8	•	\$ -	5 .	S	3.6	5		5	3.6
3.60	3	Integration, Assembly, Checkout	-	\$ 5.7	\$	5.7	\$ -	\$ 3.6	\$	43.4	\$ -	\$ -	S	49.1	\$		s	49.1
5,70	3	System Test Operations	-	5 11.5	5	11.5	5 -	5 -	8		8 · ·	5 -	5	11.5	8		5	11.5
5.80	3	Ground Segment	-	3 66.8	3	66.8	5 -	5 -	3		s .	s .	3	66.8	5		5	66.8
5.80.01	4	Ground/Test Support Equip	-	\$ 51.9	5	51.9	5 -	5 -	5	•	\$.	5 .	3	51.9	5		5	51.9
5.80.02	4	Tooling	-	5 14.9	3	14.9	5 -	3 -	3			• •	3	14.9	5		5	14.9
5.80.03	4	Facilities	-	s ·	3		5 -	5 -	3		s .	5 .	3		5		5	
5.80.04	4	Launch Operations	-		3		5 -	ş -	3				3		3		5	
5.80.05	4	Fugnt Operations		s .	3		5 -	5 -	3		5 .	s .	3		5		5	
9.0	2	Ground Data System (GDS)	-	3 .	3		3 -	3 -	3		s .	3 .	3				5	· ·
10.0	2	System Integration, Assembly, Test & Check Out	-	s .	3		5 -	5 ·				5 ·	0		3		5	· ·
11.0	2	Education & Public Outreach		s .	3		2 .	3 .	3		3 .	3 .	2		5		5	· ·

Figure 39.1. Work Breakdown Structure of Project (Adj. to 2025)

Burdens, &

Website

Link to Website: https://engprojects.tcnj.edu/nasa-hulc/

NASA HULC – NASA HUMAN LANDER CHALLENGE

Project Description and Team Goals

Design Mee

Meet The Team Proje

Project Advisor

Competition Outline

Outline Contact Info

Figure 40.1: Screenshot of Website Homepage

