

AggieSat Laboratory

Synthetic Orbital Landing Area for Crater Elimination (SOLACE)

Principal Investigator: Helen Reed, Ph.D, P.E.
Program Manager: Shirish Pandam, B.S. (G, AERO)
Project Manager: Kamalika Bose (UG, MXET)
Chief Engineer: Nicholas X. Siodlarz, B.S. (G, BUSI)

06/26/24

Personnel

Command and Data Handling

Lead: Yusif El-awawdeh, (G, GEOG) Brayden Hudson, (UG, ESET) Aidan Jones, (UG, GENE) Daniel Vinnik, (UG, ESET)

Communications Lead: Thomas Honeywill, (G, ECEN) Ayush Mishra, (UG, AERO) Josh Wu, (UG, CPEN)

Electronics and Power Systems

Lead: Thomas Lopez, (UG, ESET) Kyle Carlson, (UG, ECEN) Jaret Pinkerton, (UG, MXET) Guidance, Navigation, and Control

Lead: Travis Mason, (UG, AERO) Joseph Carbone, (UG, AERO) Adam Knight, (UG, AERO)

Surface, Integration, and Test Environment

Lead: Akshyat Dumka, (UG, MXET) Kai Elmore, (UG, AERO) Abhinav Sivakumar, (UG, MXET) Bao Tran, (UG, AERO)

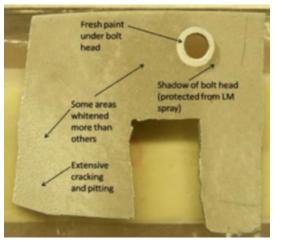
Thermal, Mechanics, and Structures

Lead: Thomas Magee, (UG, AERO, PHYS) Brandon Elliott, (UG, AERO) Theresia Heimer, (UG, ITED) Pan Zhou, (UG, MEEN)

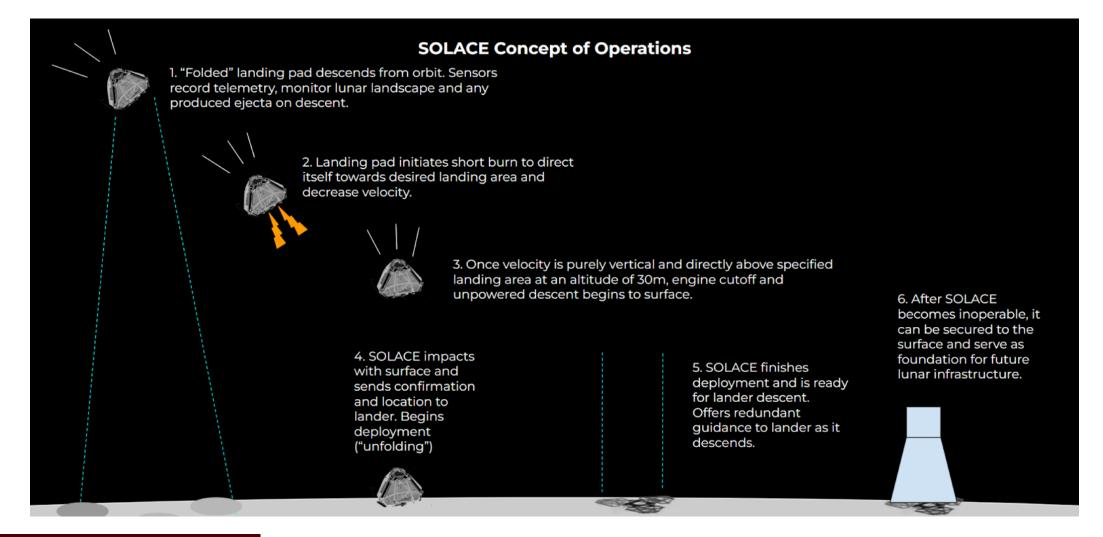
<u>Key</u> UG -Undergraduate G - Graduate

AERO - Aerospace Engineering CPEN - Computer Engineering ECEN - Electrical Engineering ESET - Electronic Systems and Engineering Technologies ENGR - General Engineering GEOG - Geography ITDE - Interdisciplinary Engineering MATH - Mathematics MEEN - Mechanical Engineering MXET - Mechatronics Engineering PHYS - Physics

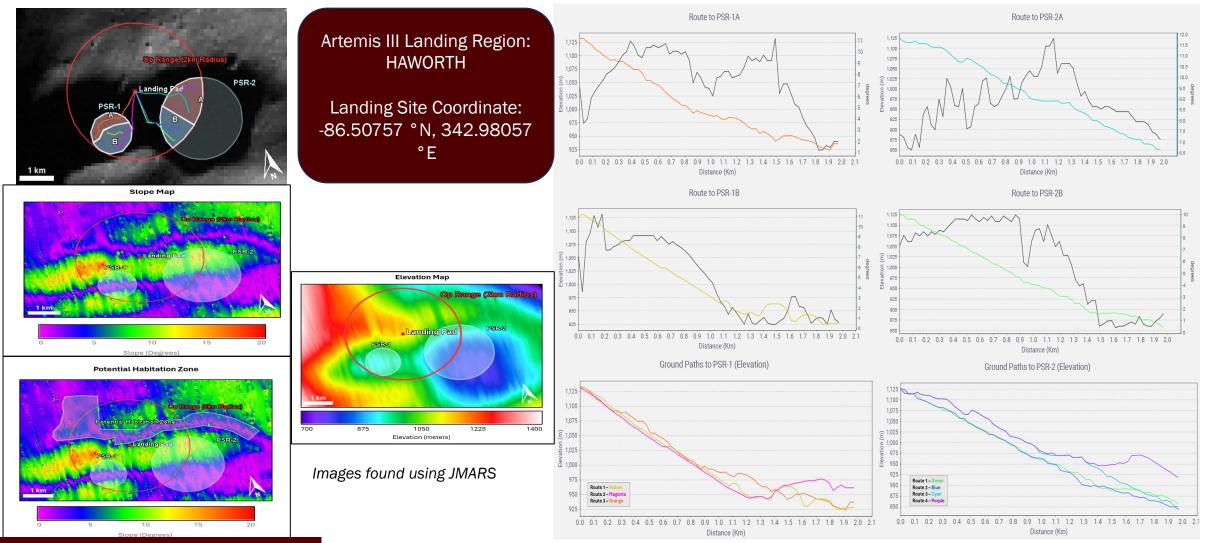
About AggieSat Laboratory


- "The AggieSat Laboratory Student Space Program trains university students in systems engineering through hands-on experience in the design, building, testing, and operation of space-related systems."
- Largest university satellite program in the country
- 7 simultaneous projects this year
- AggieSat 6 oldest project
- SOLACE youngest project

Presenting: Shirish Pandam (Program Manager)


PSI-Induced Cratering and Dispersal

- Cratering: removal of local regolith to form "craters" in the surface
- Dispersal: dust and rocks blown from the landing site at high speeds
- Notable problems caused in previous planetary missions
 - Apollo missions: Engine overpressure, false velocity readings
 - Apollo 12 and Surveyor III: Damage to Surveyor III from regolith sandblasting
 - Mars Science Laboratory (MSL) and *Curiosity*: Damage to *Curiosity* from MSL's descent
- Hard to characterize
 - Best testbed is the Moon
 - Only rudimentary predictions at best of important characteristics


Images courtesy of Zanon, et al

SOLACE Overview

System Integration and Test Environment (SITE)

PSR Region Pathing

Presenting: Kamalika Bose (Project Manager) RegieSat Laboratory

System Integration and Test Environment (SITE)

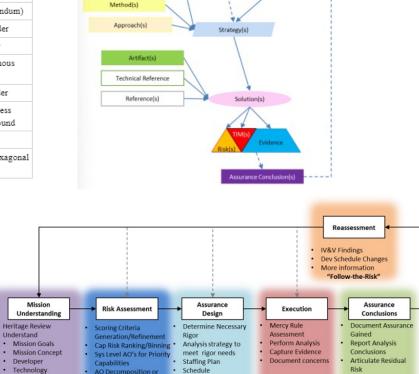
Adaptive Independent Verification and Validation Plan

Thread(s)

Mission Capabilities

Technical Reference

Mission, System, SW Arch. . Ranking of AO's


Correlation

Assurance Require

Image courtesy of NASA IV&V Program

	Insoluble or soluble in			Compound	Weight percent in Lunar Regolith	Most Common Form
Compound	Water	Chemical Reactivity	Density	Silicone Dioxide	42-48%	Transparent to gray powder
Silicone Dioxide	Insoluble	Non - Reactive	2.65 g/cm ³	Titanium Dioxide	1-7%	Odorless white powder
Titanium Dioxide	Insoluble	Non - Reactive	4.23 g/cm ³	Aluminum Oxide	12-27%	Crystalline powder (corundum)
Aluminum Oxide	Insoluble	Non - Reactive	3.99 g/cm ³	Iron Oxide	4-18%	Reddish-brown powder
Iron Oxide	Insoluble	Reactive	5.74 g/cm ³	Magnesium Oxide	4-11%	White nanopowder
Magnesium Oxide	Practically insoluble	Reactive	3.58 g/cm ³	Calcium Oxide	10-17%	Odorless white amorphous powder
Calcium Oxide	Soluble	Reactive	3.34 g/cm ³	Sodium Oxide	0.4-0.7%	Odorless white powder
Sodium Oxide	Insoluble	Reactive	2.27 g/cm ³			Yellow or white odorless
Potassium Oxide	Insoluble	Reactive	2.27 g/cm ³	Potassium Oxide	0.1-0.6%	crystalline solid compound
Manganasa (II) Orida	Insoluble	Reactive	5 27 g/am ³	Manganese(II) Oxide	0.1-0.2%	Greenish powder
Manganese(II) Oxide	Insoluble	Reactive	5.37 g/cm ³			Fine light to dark green hexagona
Chromic Oxide	Insoluble	Non - Reactive	5.22 g/cm ³	Chromic Oxide	0.2-0.4%	crystals

Particle and PSI Analysis

Budget Considerations

Assurance Planner

echnical Products

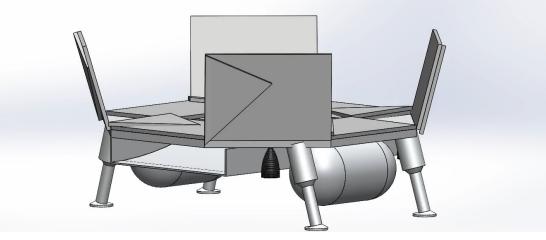
Capability/Entity(s)

Assurance Objective(s)

	Mechanical similarity to regolith	Mineralogical similarity to regolith	to Availability Cost		Lunar ISRU simulatability	Total Score
Weight	5	5	3	3	4	
JSC-1	4	2	1	1	2	10
LHS-1	5	5	4	2	4	20
NU-LHT-2	4	3	4	4	2	17
Weighted Scores						
JSC-1	20	10	3	3	8	44
LHS-1	25	25	12	6	16	84
NU-LHT-2	20	15	12	12	8	67

Scale	1	Poor
	2	Below Average
	3	Average
	4	Above Average
	5	Excellent

Presenting: Kamalika Bose (Project Manager)


🛞 Aggie**Sat** Laboratory

Do not distribute outside AggieSat Laboratory without Program Manager permission.

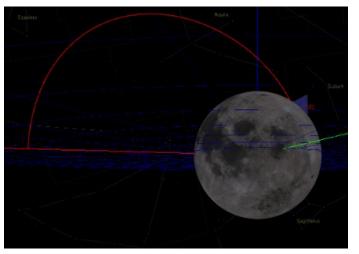
Assurance Conclusi

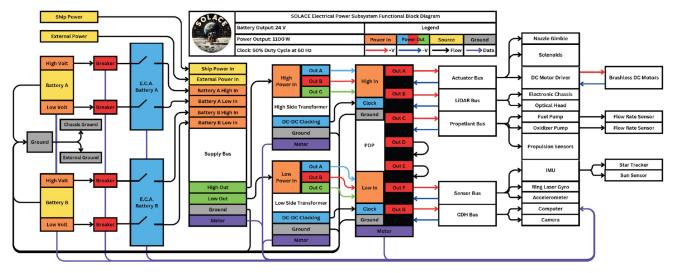
Thermal, Mechanics, and Structures (TMS)


- "Bunker"-esque design
 - Lower base houses electrical components and other sensitive equipment
 - Plume redirection system redirects plume to one specific line of redirection
 - Grating aids in nozzle plume redirection
 - Main landing surface consists of 18 parts that can be stowed or deployed
 - Spring-actuated "stakes" inject into lunar surface for pad stability on HLS descent
- Materials
 - Graphene
 - Titanium aluminide
 - Hafnium diboride

Do not distribute outside AggieSat Laboratory without Program Manager permission.

Thermal, Mechanics, and Structures


- Propulsion
 - Four liquid-propelled boosters provide descent and attitude control
 - Engine gimbals
 - Enable attitude control
 - Gimbal to lunar parallel to limit PSI on descent
 - Methalox was chosen over hydrazine
- Overall characteristics
 - Dry mass of 14.38 metric tons
 - Wet mass of 25.38 metric tons
 - Stands 1.4 m tall, occupies a total volume of 18.28 m³
 - Pad landing surface can withstand temperatures up to 3600 K
 - Pad can withstand loads up to 162 kN


Do not distribute outside AggieSat Laboratory without Program Manager permission.

Guidance, Navigation, and Control (GNC)

- Guidance System
 - Employs a novel machine learning algorithm trained on previous lunar landing videos
 - Identifies safe landing zones on descent
 - Identifies abort trajectories in the event of off-nominal scenarios
 - Nominal trajectory analyzed in NASA General Mission Analysis Toolkit (GMAT)
- Navigation System
 - IMU Honeywell HG1900 IMU
 - LiDAR NASA's Navigational Doppler LiDAR
 - Star tracker RocketLab ST 16HV star tracker
 - Sun sensor RedWire Coarse Sun Sensor (Cosine Type)
- Control System
 - Gimballing boosters can be used for attitude and descent control

Electrical Power Subsystem (EPS)

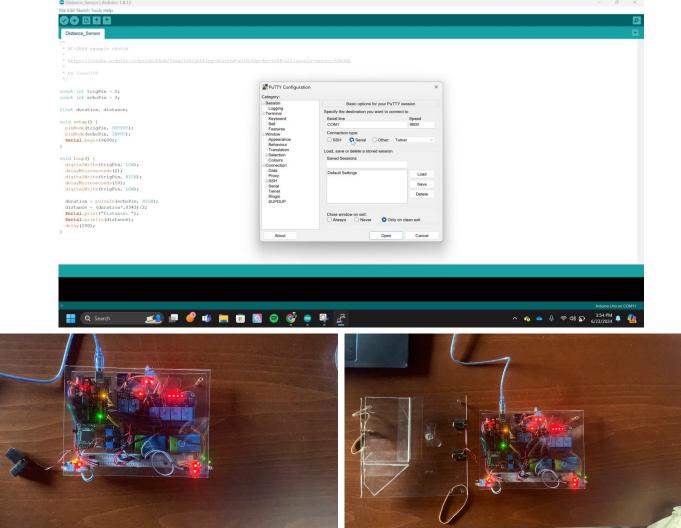
System	Component	Manufacturer	Power	Voltage	Current	Quantity
	Navigation Doppler Lidar	NASA Langley	80 W	28 VDC	2.857 A	1
	GG1320 Ring Laser Gyro	Honeywell	1.6 W	15 VDC	0.107 A	1
	HG1900 IMU	Honeywell	3 W	5 VDC	0.6 A	1
Sensor Array	Coarse Sun Sensor	RedWire	0 W	TBD	0.0013 A	1
	ST-16HV Star Tracker	RocketLab	0.5 W - 1 W	9 - 34 VDC	0.056 A (MAX)	1
	TMP64 Thermistor	Texas Instruments	0 W	5.5 VDC	0.0 A	4
	Accelerometer	NASA JPL / UCLA	0.058 W	TBD	TBD	1
Computer	Jetson AGX Orin	NVIDIA	15 - 60 W	12 VDC	5.0 A (MAX)	1
Computer	IMX586 Camera	ArduCam	1.19 W	5 VDC	0.238 A	1
	PD82152B BLDC Motor	Transmotec	120 W	24 VDC	7.2 A	4
Control	SDU75 WA Solenoids	Moog	10 W	24 VDC	0.42 A	16
	MCF8315C Driver	Texas Instruments	1 W	4 - 35 VDC	4.0 A	4
	Fuel Pump	NASA Glenn	500 W	TBD	TBD	4
Propulsion	Oxidizer Pump	NASA Glenn	500 W	TBD	TBD	4
	Gimble	NASA Marshall	TBD	TBD	TBD	4
Totals:			4790.848 W (M/	AX)		

EPS Key Features:

External power plug-ins and permanent grounding capability DC-DC clocking for PWM Metering at each stage for monitoring Dedicated busses for other subsystems Transformers to provide a wide range of potential input voltages

EPS Sensor Array:

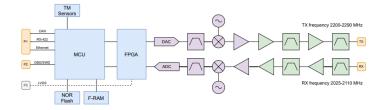
NASA Navigational Doppler Lidar Honeywell Ring Laser Gyro Honeywell IMU RedWire Sun Sensor RocketLab Star Tracker Texas Instruments Thermistors NASA Designed Accelerometers

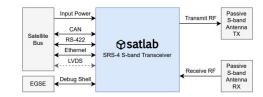

EPS Mechanical:

- Transmotec Brushless DC Motors Moog Solenoids
- Texas Instruments DC Motor Drivers NASA Designed Propulsion Gimbels NASA Designed Propulsion Pumps

Presenting: Thomas Lopez (EPS Lead)

Laboratory

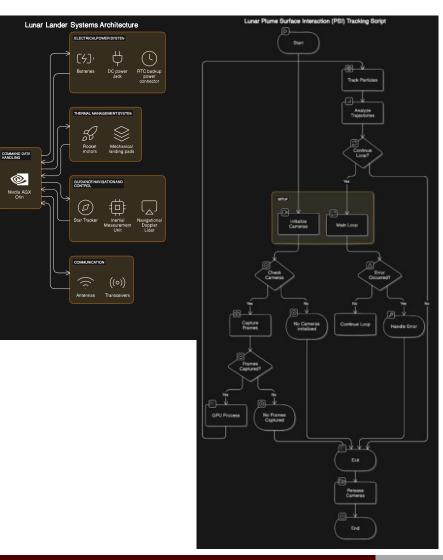

Electrical Power Subsystem (EPS)



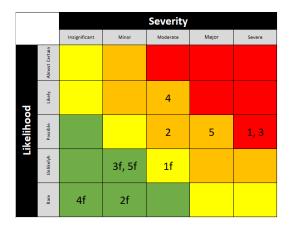
Presenting: Thomas Lopez (EPS Lead) RegueSat Laboratory

Communications (COM)

- SRS-4 Full-Duplex High-Speed S-Band Transceiver
 - Operates on ITU-approved S-Band frequencies centered at 2250 MHz
 - 16-QPSK modulation scheme with compatibility for CCSDS channel coding
 - Variable transmit symbol rate up to 10 MB/s
 - Bitrate up to 12.5 MB/s when communicating with NVIDIA Jetson Nano
 - Average power output of 4W at a gain of 9 dBi, max gain of 11 dBi
- IQ-Spacecom S-Band Patch Antenna
 - Designed to operate at a center frequency of 2250 MHz with max 11 dBi gain
 - 50 MHz bandwidth
- Lunar Environmental Impacts
 - Lunar Regolith Permittivity: 3 F/m
 - Conductivity: 10E-14 S/m Sun, 10E-9 S/m dark
 - 5-10 dB estimated loss
 - Lunar ground acts as a reflector and absorber below S-band



Images courtesy of SatLab SRS-4 data sheet.


Command and Data Handling (CDH)

- Components
 - NVIDIA Jetson AGX Orin
 - 3 ArduCam IMX586 48MP Camera Modules
- Hierarchical State Machine (HSM)
 - Reacts to asynchronous and nondeterministic inputs
 - Structured and flexible management framework
- PSI Monitoring
 - 3D particle tracking velocimetry
 - Cameras rotate to lunar parallel once descent has been completed

System Merit

- Performance
 - Adheres to HuLC constraints and guidelines
 - Unique position to act as a testbed for emerging technologies, such as machine-learning driven guidance
- Technology Readiness
 - Most incorporated technologies are TRL 9
- Risk
 - Low risk solution
 - Anticipated risks were analyzed, and mitigation strategies were developed
- Programmatic Implementation
 - Designed to be compatible with any proposed HLS or other landing system
 - Designed to function nominally in a wide variety of lunar regions

1: SOLACE is a projectile

- 2: Accelerated degradation
- 3: Failed deploy
- 4: Descent brownout
- 5: Departs from trajectory
- 1f: Stakes
- 2f: Titanium aluminide
- **3f: Spring-loaded actuators**
- 4f: Robust regulation
- 5f: Intelligent aborts

Costing

- Total estimated cost of SOLACE's lifetime development, launch, and operations is \$1944.9M
 - \$290.5M for non-recurring costs (NRC)
 - \$1051.8M for recurring production costs
 - \$189.9M for launch and \$370.2M for operations
 - Values calculated with NASA's Project Cost Estimation Capability (PCEC)

		Units Convers			000																	
Y2024	ŞМ	Inflat	tion Factor:					_						_	_	_						
				No 1		Design &		tem Test			ecurring										TOTAL	
NBS #		Line Item Name/Description		Recu		Development		rdware	Flight Unit				-Allocated		rations		TOTAL		+ Burden			urden
)		System Name		\$	290.5		\$	-	\$ -	\$	1,051.8	-	232.4	\$	370.2	-	1,944.9	S	-		·	1,9
.0	2	Project Management		\$		ş -	\$	-	s -	S	44.4			\$	-	\$	63.5	S	-	\$		
.0	2	Systems Engineering		\$	10.6	\$ -	S	-	s -	S	17.1	-	-	s	-	\$	27.6	S	-	\$		
.0	2	Safety and Mission Assurance		\$	15.5	s -	\$	-	s -	S	34.0	-		\$	-	\$	49.5	\$	-	Ş		
0.0	2	Science/Technology	_	\$	-	s -	\$	-	s -	\$		s	42.6	\$	-	\$	42.6	\$	-	Ş		
i.0	2	Payload(s)		\$	7.1	s -	\$	-	s -	S	15.6	-	-	\$	-	\$	22.7	S	-	Ş		
.01	3	Payload Management		\$	2.5	s -	\$	-	s -	S	5.8	\$		\$	-	\$	8.3	S	-		\$	
.02	3	Payload System Engineering		S	0.8	ş -	\$	-	s -	S	1.3	\$		\$	-	\$	2.1	S	-		\$	
.03	3	Payload Product Assurance		\$	0.3	ş -	\$	-	\$ -	S	0.8	\$		\$	-	\$	1.1	\$			\$	
.10	3	Instruments - EMPTY ROLLUP		\$	-	\$ -	\$	-	\$ -	\$	-	\$		\$	-	\$	-	S		Ş	\$	
i.x	3	Payload I&T		\$	3.5	\$ -	\$	-	s -	\$	7.7	s		\$	-	Ş	11.2	S	-	Ş	\$	
i.0	2	Flight System \ Spacecraft		\$	190.3	ş -	\$	-	s -	\$	810.6	\$		\$	-	\$	1,000.9	5	-	5	Ş	1,0
.01	3	Flight System Project Management		s	1.0	s -	\$	-	ş -	S	2.3	\$		\$	-	Ş	3.3	s		9	ş	
.02	3	Flight System Systems Engineering		s	1.8	s -	\$	-	ş -	S	2.9	s		\$	-	Ş	4.7	s	-	9	ş	
.03	3	Flight System Product Assurance		s	4.6	ş -	\$		ş -	s	10.0	s		s	-	Ş	14.6	s	-	Ş	ş	
.10	3	Spacecraft		s	168.1	s -	s	-	ş -	S	762.6	s		s	-	Ş	930.7	s	-	\$	5	9
	4	Structures & Mechanisms		\$	18.0	s -	Ş		s -	\$	670.3	\$		\$		s	688.3	s		\$	\$	e
-	4	Thermal Control		\$	0.1	s -	Ş	-	s -	s	0.0	\$		\$		\$	0.1	\$	-		s	
-	4	Electrical Power & Distribution		\$	1.4	s -	Ş		s -	\$	1.1	\$		\$		\$	2.5	\$	-		s	
	4	GN&C		s	0.5	s -	s		s -	s	0.7	S		s		s	1.2	s				
	4	Propulsion		s	142.2	s -	s		s -	s	84.4	s		s		s	226.6	s		s		2
	4	Communications		s	0.9	s -	s		s -	s	1.2	S		s		s	2.1	s			s	
	4	C&DH		s	5.0	S -	s		s -	s	4,9	s		s		s	9,9	s			s	_
i.x	3	Flight System I&T		s	14.9	s -	s		s -	s	32.8			s		s	47.6	s				
.0	2	Mission Operations System (MOS)		s	19.2	s -	s		s -	s				s	370.2	s	456.3	s		S		4
	3	MOS/GDS Development (Phase B-D)		s	19.2	s -	s		s -	s		· ·		s		s	86.1	s		9	·	
	3	Mission Ops & Data Analysis (Phase E)		s		s -	s		s -	s	-	s		s	370.2	ŝ	370.2	s		Š		3
10	2	launch Vehicle/Services		s		s -	s		s -	s		s		s	-	s	189.9	s		s		1
.0	2	Ground Data System (GDS)		s		s -	s		s -	s		s	-	s		s		s				
0.0	2	System Integration, Assembly, Test & Check Out		s	28.7	5 -	s		s -	s	63.3			s		s	91.9	s		9		
1.0	2	Education & Public Outreach		s	20.7	5 -	S		5 -	s		s		s		s	51.5	s		9		-
1.0	1 4	Education & Fabric Outredth		3			3			13		3		3		4		3			,	
																	TOTAL			T	TOTAL	
										Res					rves %	w S	/Reserves 1.944.9				Burd	dens 1.9

Design, Test, and Evaluation (DTE) Scheduling

- Major milestones
 - System assembly concludes 2 years into DTE
 - Testing and evaluation concludes 4.2 years into DTE
 - Launch occurs 4.5 years into DTE
 - Expected primary objective lifetime is 10 years

Milestone	ET (YY:MM:DD)	Milestone	ET (YY:MM:DD)
Components Procurement	00:00:00	Environmental Testing	02:06:00
Sensor Testing	00:03:00	Subsystem V&V	03:04:00
Structure Assembly	01:00:00	System V&V	04:02:00
Structure Testing	01:03:00	Day in the Life Testing	04:02:15
EPS/CDH/GNC/COM Assembly and Integration	02:00:00	Launch Preparation	04:05:00
EPS/CDH/GNC/COM Testing	02:03:00	Flight	04:06:00

Presenting: Nicholas Siodlarz (Chief Engineer)

🛠 Aggie**Sat** Laboratory

Do not distribute outside AggieSat Laboratory without Program Manager permission.

Thanks for listening!