The Luna-F.O.L.D. Mechanism

HuLC Smash - Ohio Northern University

Harper Flynn, Xavier Disney, Jadon Brownlee, Noah Daugherty

Advised By: Dr. Louis DiBerardino

HuLC Smash - Ohio Northern University

Harper Flynn - BSME 24' Jadon Brownlee - BSME 25' Xavier Disney - BSME 24' Noah Daugherty - BSME 24'*

Left to Right: Xavier, Jadon, Noah, Harper

Advised by: Dr. Louis DiBerardino

* Unable to attend Conference

Specific Issue Being Addressed

 Protect mission critical assets from effects of <u>Plume Surface Interaction (PSI)</u> on the Moon.

• Directly approaching the prevention of exhaust reaching the ground.

Plume Surface Interaction

• The interaction between the rocket exhaust and the lunar regolith.

• Can damage lander, block sensors, rip space suits and cause health risks for astronauts.

Assumptions

- Data from Apollo missions were used as this data is most applicable to the Artemis missions.
- The lunar weight of the Starship HLS is assumed to be 485,000
 Ibs and the landing feet are 6 ft diameter circles.

 The landing zone would be free from large rocks and boulders, and would be relatively flat.

Solution Method

- Create a physical barrier between the rocket and the lunar environment.
- Support the weight of the lander to prevent any sinking into the soil.
- Acts as a staging area for astronauts.

The Luna F.O.L.D. Mechanism

1. Landing Pad

2. Pneumatic Unfurling System

Figure 1: Folding Geometry

Landing Pad System

- Reduces diameter by 5 times for transport.
- All segments are connected, meaning the pad moves all at once.
- Meant to completely prevent PSI.

Figure 2: Scaled Prototype

NASA Starshade

- Used to block light from stars.
- Uses origami to pack down efficiently.
- Inspiration for Luna-F.O.L.D.

Figure 3: Starshade [1]

Linear Actuator System

- Impact force compresses working fluid.
- Pneumatic system unfurls landing pad.
- One time use.

 Center of Gravity located in foot of plunger to minimize likelihood of flipping after deployed.

Figure 4: Actuation Method

Deployment Method

- Deployed from a secondary rocket before the Starship HLS arrives to the moon.
 - Height of **100-150 meters** above lunar surface.
 - Impact force drives pneumatic actuator system.

Deployment Demonstration

Luna-F.O.L.D.

Unraveling

Prototype Testing

• Two tests to simulate a landing were performed, one with the pad and one without.

 A leaf blower was used to simulate rocket exhaust and flour was used to represent the lunar regolith.

Prototype Testing Video

Luna-F.O.L.D. Test 1

No Landing Pad

Full Scale Analysis

• Segments made from carbon fiber.

• Segments attach by being bridged with kevlar fabric.

Parts coated in ceramic heat shielding.

• Scaled up to 60 ft in unfurled diameter.

Boundary Conditions

 4 circular pressure loads placed symmetrically about center.

• P = 4,300 psf

6' diameter

 Regolith ground simulated using characteristics of quartz-silica beach sand^[2].

• $\nu \cong 0.270^{[2]}$

• **E** ≅ 475,000 psf^[3]

Boundary Conditions

 Carbon Fiber used for pad segments^[4].

- $\nu \cong 0.2$
- $E \cong 6.06 \times 10^9 \text{ psf}$

 Kevlar used was DuPont Kevlar 49 Aramid Fiber^[5].

•
$$\nu \cong 0.36$$

• $E \cong 2.34 \times 10^9 \text{ psf}$

Full Scale Analysis

Figure 5: Stress induced by landing Figure 6: Hinge Tension Analysis

Hinge Material?

- Grey fabric and black tape regions.
- <u>Full Scale</u>: Materials to maintain integrity under extreme conditions

Figure 7: Hinge Material Location

Full Scale Material Testing

- Potential materials were submerged in liquid nitrogen.
 - Simulate extreme temperature conditions present on the lunar surface.
- Samples were then tensile tested in an Instron machine.

Figure 8: Tested Samples

Full Scale Material Testing

• Kevlar was the strongest material tested.

• Under cryogenic conditions, it maintained a high tensile strength.

Withstands projected stresses.

Full Scale Material Testing: Results

Table 1: Peak Stress in Each Material

Material	Ultimate Tensile Stress (MPa)		
Kevlar	62.6		
Nomex	19.5		
Carbon Fiber Cloth (Twill Weave)	42.2		

Full Scale Material Testing: Costs

Table 2: Material Cost Comparison

Material ^[6]	Length (in)	Width (in)	Thickness (in)	Cost (\$/in ²)
Kevlar	12	60	.024	0.0492
Nomex	12	12	.010	0.3328
Carbon Fiber Cloth (Twill Weave)	36	50	.025	0.0867

Closing Remarks

We believe this is a cost-effective and innovative method of nullifying plume-surface interaction.

Questions?

Citations

[1] "Capturing the art and science of NASA's origami starshade," *Photography*, Jun. 15, 2024. https://www.nationalgeographic.com/photography/article/art-science-nasa-starshade-origami-behind-the-cover-february

[2] S. K. Thota, T. D. Cao, and F. Vahedifard, ASCE, tech. https://par.nsf.gov/servlets/purl/10202899

[3] M. G. Kalyanshetti, S. A. Halkude, D. A. Magdum, and K. S. Patil, AJER, tech. https://www.ajer.org/papers/v4(08)/ZG04802440249.pdf

[4] ANSYS Workbench Database

 [5] "DuPontTM Kevlar[®] 49 Aramid Fiber," MatWeb, https://www.matweb.com/search/datasheet.aspx?MatGUID=77b5205f0dcc43bb8cbe6fee7d36cbb5&ckck
 =1 (accessed Jun. 4, 2024).

[6] McMaster-Carr, https://www.mcmaster.com/ (accessed Jun. 4, 2024).