

Plume Additive for Reducing Surface Ejecta and Cratering 2024 Human Lander Challenge

Students

David Clay - Bruce Noble - Aidan Kihm Jakobe Denby - Grant Bowers - Sanaya Nichani

Advisor: Dr. Siwei Fan

Acknowledgements

- Embry-Riddle Undergraduate Research Institute (URI)
 Eagle-Prize
- Embry-Riddle Environmental Health and Safety (EHS)

EMBRY-RIDDLE Aeronautical University

Aerospace Eng.

Bruce Noble Aerospace Eng.

Aidan Kihm Mechanical Eng.

Dr. Siwei Fan Dept. Aerospace Eng.

Jakobe Denby Aerospace Eng.

> **EMBRY-RIDDLE** Aeronautical University

Grant Bowers Software Eng.

Sanaya Nichani Aerospace Eng.

Agenda

Introduction

Plume Surface Interaction (PSI)

- Danger to landers (Watkins et al., 2021)
 - Destabilizes landing site
 - Disrupts sensors and visuals
- Danger to surrounding assets
 - Ejected particles can sand blast assets

Rightward of 11817, showing the dramatic tilt of the spacecraft. (NASA, 2016)

Introduction

Plume Additive for Reducing Surface Ejecta and Cratering (PARSEC)

- Returning to the Moon
 - Artemis will face challenges with PSI
- PARSEC
 - Physically mitigate PSI
 - Create safer landing conditions
 - Protect lunar assets

Agenda

- Deployment
- Additives

Solution PARSEC – Trade Study for Mitigation Methods

- Compared seven solutions against technical criteria
- Ultimately determined a plume additive approach

Mitigation Methods			Scores				Trades			
Criteria	Mandatory? (Y=1/ N=0)	Weight	Scale	Deployable Landing Pad (Cargo Drop)	Landing Boosters at top	Ballistic Landing	Electrically Charged Soil	Change Shape and Angle of plume	Exhaust Additive to create Landing Pad	Melt Regolith from Lander
Modifications Required	0.5	8%	1-3	2.5	1	2	2.5	1.5	2.5	2.5
Current Understanding	0	10%	1-3	3	2	3	1	1.5	2	1.5
Available Information	1	5%	1-3	2.5	3	2.5	2	1.5	2.5	2
Reusability	0	5%	1-3	3	3	2	3	2.5	3	3
TRL	0	5%	1-3	1	2.5	3	1	1	1	1
Mass	0	15%	1-3	1	2	3	3	3	3	3
Volume	0	8%	1-3	1	3	3	3	3	3	3
Cost	0	8%	1-3	1	2	2	2.5	2	2.5	1
Power	0	5%	1-3	3	3	3	2	3	3	1
Effectiveness	0	8%	1-3	3	2	3	1.75	1	2	2.5
Complexity	0	8%	1-3	1	2	3	1.5	2	2	1
Safety	1	15%	1-3	3	2	1	3	2.5	3	1
Weighted Total %		100%		69%	73%	82%	77%	71%	85%	63%

EMBRY-RIDDLE Aeronautical University

Solution PARSEC – System Overview

Plume Additive for Reducing Surface Ejecta and Cratering

- Additive injected into plume, like thermal spraying
- Melted additive conglomerates regolith particles
- Particles come together to form solid landing pad

Deployment – System Concept

- Combines both Fluidization and Thermal Spraying
- Made for minimal modification of lander

Deployment – Fluidization

- Move solids like fluids (Shabanian et al., 2012)
- Increase in heat transfer (Cocco et al., 2014)
- Evenly distribute additive

Deployment – Thermal Spraying

- Fine ceramic or metal particles are melted and accelerated (Cañas et al., 2023)
- Melted particles form a protective coating on part surfaces
- Scaled-up process could be done over the lunar surface (Astrobotic, 2021)

Solution Deployment – Integrated System

Before

After

Additives – Definition

- Technical ceramics and metals that will be injected into plume
- Desired properties:
 - Strength to survive plume
 - Melting point < 3000 K
 - High thermal shock resistance
 - High fracture toughness
 - Low cost & mass

Additives – Candidates

- Main additives
 - Alumina
 - Zirconia-toughened alumina (ZTA)
 - Yttria-stabilized Zirconia
 - Nickel alloys
- Other additives
 - Si_3N_4 & AIN sintering to form SiAION
 - Thermite reactants

Alumina Powder in Optical Microscope

Nickel Alloy Powder in Optical Microscope

Additives – Properties

Additives Tensile Strength v. Density Plot (ANSYS® Inc., n.d.)

Solution Additives – Properties (cont.)

17

Additives – Summary

Alumina

- Cheapest
- Least dense
- Moderate melting point (2300 K)
- Lowest tensile strength

Y-stabilized Zirconia

- Highest thermal shock resistance
- Tensile, flexural strength > alumina
- Moderate density
- Highest melting point (2900 K)
- Lowest thermal conductivity

ZTA

- Highest fracture toughness
- Moderate melting point (2300 K)
- Similar density to alumina
- Flexural strength > alumina
- Lowest thermal shock resistance

Nickel

- Highest thermal conductivity
- Lowest melting point (1600 K)
- Highest ductility
- Variable mechanical properties
- Most expensive & dense
- Suspected cancer hazard (Gates, 2023)

EMBRY-RIDDLE Aeronautical University

Agenda

• Numerical Simulation

EMBRY-RIDDLE

Aeronautical University

- V&V
- Risks

 ${\bf Experiment-Conditions}$

- Test for conglomeration
- 18 tests in total using

 Alumina particles
 Buildup #22 (nickel alloy)
- Scaled down rocket engine tests with $_{\odot}\,\text{Sand}$
 - \circ Fire Brick
 - \circ LSP-2 Lunar Regolith Simulant

<u>Aeronautical University</u>

Experiment – Alumina Result

- Minor conglomeration
- Frail pad formations that fractured
- Issues outside of PARSEC's control:
 Additive clog
 - Temperature/thermal properties not high
- Inconclusive

Experiment – Nickel Result

- 100% success rate
- Pads 3-6cm diameter
- Pads 0.5-1cm in depth
- Long lasting and strong

Simulation – Model

- Analysis in ANSYS Mechanical
- Regolith bed:
 - 30m diameter; 5m depth
 - Isotropic elastic modulus equal to deformation modulus of regolith
- Pad assumptions:
 - Particle-reinforced composite
 - Isotropic elasticity
 - No pores or voids
 - Obeys rule of mixtures (Li et. al. 2001)

Landing pad and regolith bed models (ANSYS® Inc., n.d.)

Verification and Validation Simulation – Result

- Simulated various landing pad sizes
- Calculated factors of safety with:
 - Estimated pad tensile strength
 - Max tensile stress from simulation
 - Additive weight percentage
- Optimal Pad Properties:
 - 8m Diameter
 - 2cm Thickness
 - 50 wt% additive

X-axis normal stress plot for 8m x 2cm pad (ANSYS® Inc., n.d.)

Verification Process

EMBRY-RIDDLE Aeronautical University

Risk Management – Risk Priority Matrix

EMBRY-RIDDLE Aeronautical University

Risk Management – Risks and Mitigations

1	Additive conglomeration performance	Exporimontation	
5	Additive melting properties		
11	Deployment efficiency	Ontimization	
2	System mass requirements		
8	Additive health hazards	→ Procedure	

Agenda

Budget Cost Estimations

- PCEC used to estimate System Cost
- CER formula based on mechanical systems for prior missions
- Assumes deployment system is 200 kg (0.5% lander mass)
- Total Non-Recurring: \$23.3M; Recurring: \$11.2M

Cost Phase	FY2015 \$M (Direct Output)	FY2024 \$M (Inflation-Adjusted)
Non-Recurring	19.6	23.3
Design & Development	7.4	8.7
System Test Hardware	12.3	14.6
Flight Unit	9.4	11.2

Budget Full Breakdown

- Total Project: \$55M
- 10 employees
- 50% manufacturing margin
- 30% total cost margin

Mission Phase	Phase A	Phase B	Phase B	Phase C	Phase D					
Year	FY 1 (2025)	FY 2	FY 3 (2027)	FY 4	FY 5	Cumulative				
	(2023) F	PERSONNI	(2027) FL	(2028)	(2029)	10tal (3K)				
Science Personnel (1)	88	/10								
	80	02	02	80	00	419				
Engineering Personnel (4)	320	328	328	345	353	1,675				
Technicians (1)	60	62	62	65	66	314				
Administration Personnel (2)	120	123	123	129	132	628				
Project Management (2)	240	246	246	259	265	1,256				
Total Salaries	820	841	841	884	905	4,292				
Total ERE	229	235	235	247	253	1,198				
	D	RECT CO	STS							
System Cost (from CER)	4,660	4,781	4,902	5,023	5,145	24,512				
Manufacturing Margin (50%)	2,330	2,391	2,451	2,512	2,572	12,256				
Total Direct Costs	6,990	7,172	7,353	7,535	7,717	36,767				
FINAL COST CALCULATIONS										
Total Projected Cost	8,039	8,248	8,430	8,666	8,880	42,263				
Total Cost Margin (30%)	2,412	2,474	2,529	2,600	2,664	12,679				
Total Project Cost	10,451	10,722	10,958	11,266	11,545	54,941				

Timeline

- 5-year Plan
 - 10 months of margin
 - Additional testing
 - Full scale verification
 - Major reviews
 - NASA SEH 3.0 (Hirshorn, 2016)

Agenda

Conclusion

- Tests and simulations support PARSEC additive solution at-scale
- Further testing and simulations at-scale required
- Confidence in solution
- Effective, scalable solution with great promise

Blue Moon Lander Concept Image (Blue Origin, 2023)

Starship Human Lander System Concept Image (SpaceX, 2024)

Next Steps

- Future Experimentation is necessary to determine feasibility
 - Scaling, environment, shapes and sizes, additive types
- Implementation

References

- ANSYS[®], Inc. Ansys[®] GRANTA Selector[™]. <u>www.ansys.com/materials</u>.
- ANSYS[®], Inc. Ansys[®] Mechanical[™]. <u>https://www.ansys.com/products/structures/ansys-mechanical</u>
- Astrobotic. (2021, September 22). Mitigating Lunar Dust: Masten Completes FAST Landing Pad Study. Astrobotic. <u>https://masten.aero/blog/mitigating-lunar-dust-masten-completes-fast-landing-pad-study/</u>
- Blue Moon. Blue Origin. "Blue Moon." Blue Origin, 2023, www.blueorigin.com/blue-moon.
- Cañas, E., Benavente, R., Borrell, A., & Salvador, M. D. (2023). Deposition of Advanced Ceramic Coatings by Thermal Spraying.
- Cocco, R., Karri, S. R., & Knowlton, T. (2014). Introduction to fluidization. *Chem. Eng. Prog*, *110*(11), 21-29.
- Fontes, D., Mantovani, J. G., & Metzger, P. (2022). Numerical estimations of lunar regolith trajectories and damage potential due to rocket plumes. Acta Astronautica, 195, 169-182.
- Gates A., Jakubowski J., Regina A. (2023) Nickel Toxicology. National Library of Medicine.
- Hirshorn, S. (2016). 3.0 NASA Project/ Program Life Cycle. In NASA Systems Engineering Handbook (pp. 17–40). essay, NASA.
- Li, G., Helms, J. E., Pang, S. S., & Schulz, K. (2001). Analytical modeling of tensile strength of particulate-filled composites. Polymer Composites, 22(5), 593-603.
- NASA. "Apollo 15 Map and Image Library." Www.nasa.gov, 2016, www.nasa.gov/history/alsj/a15/images15.html#Maps. NASA Photo ID AS15-87-11818.
- Shabanian, J., Jafari, R., & Chaouki, J. (2012). Fluidization of ultrafine powders. International review of chemical engineering, 4(1), 16-50.
- SpaceX. "The Moon Returning Humans to Lunar Missions." SpaceX, 2024, www.spacex.com/humanspaceflight/moon/.
- Watkins, R. N., Metzger, P. T., Mehta, M., Han, D., Prem, P., Sibille, L., ... & Laine, M. (2021). Understanding and mitigating plume effects during powered descents on the moon and mars. arXiv preprint arXiv:2102.12312

Appendix

Project Timeline

Task Name	Duration	Start	Half 1, 2025 Half 2, 2025 Half 1, 2026 Half 2, 2026 Half 1, 2027 Half 1, 2027 Half 1, 2028 Half 2, 2028 Half 1, 2029 Half 2, 2029
			D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O
PARSEC Overview	1300 days	1/1/25	
Phase A	300 days	1/1/25	
Phase B	300 days	2/25/26	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Phase C	300 days	4/21/27	1
Phase D	200 days	6/14/28	
Total Dedicated Margin	10 mons	3/21/29	
Phase A	300 days	1/1/25	
Test Candidate Additives	120 days	1/1/25	
Particle Structure Test	3 mons	1/1/25	
Particle Size Test	3 mons	3/26/25	
Test Deployer Variations	120 days	6/18/25	
Injection Angle Test	3 mons	6/18/25	
Injection Velocity Test	3 mons	9/10/25	
Reviews	60 days	12/3/25	I I I I I I I I I I I I I I I I I I I
SRR	1 mon	12/3/25	
SDR	1 mon	12/31/25	
PPP	1 mon	1/28/26	
Phase A Margin	1 mon	2/25/26	
Phase B	300 days	3/25/26	
Determine Additive	60 days	3/25/26	
Additive Chemical	1 mon	3/25/26	
Additive Particle Size	1 mon	4/22/26	
Additive Particle Shape	1 mon	5/20/26	
Develop Deployer	60 days	6/17/26	r
Deployer Nozzle Size	1 mon	6/17/26	
Deployer Flow Rate	1 mon	7/15/26	
Deployer Angle	1 mon	8/12/26	
System Tests	4 mons	9/9/26	
Modifications	2 mons	12/30/26	j i i i i i i i i i i i i i i i i i i i
Concept of Operations	1 mon	2/24/27	
Reviews	40 days	3/24/27	▼
BPP	1 mon	3/24/27	Ĩ
PDR	1 mon	4/21/27	
Phase B Margin	3 mons	5/19/27	*
Phase C	300 days	8/11/27	Ĩ
Finalise Additive	2 mons	8/11/27	
Finalize Deployer	2 mons	10/6/27	
Integrated Test	4 mons	12/1/27	
Finalize Con-Ops	2 mons	3/22/28	
Manufacturing Process	3 mons	5/17/28	
Reviews	40 days	8/9/28	* _
CDR	1 mon	8/9/28	
SIB	1 mon	9/6/28	
Phase C Margin	3 mons	10/4/28	
Phase D	200 days	12/27/28	
Fully Integration Testing	120 days	12/27/20	
Thermal Testing	2 mons	12/27/28	
Vacuum Testing	2 mons	2/21/28	
Viborations Testing	2 mons	2/21/29	
viberations lesting	2 mons	4/18/29	· · · · · · · · · · · · · · · · · · ·
Prepare Launch Operation	15 40 days	6/13/29	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Prepare Operations	1 mon	6/13/29	
Prepare Ground Soppor	rt 1 mon	7/11/29	•
Reviews	40 days	8/8/29	
ORR	1 mon	8/8/29	
FRR	1 mon	9/5/29	
Phase D Margin	3 mons	10/3/29	

EMBRY-RIDDLE Aeronautical University

Additives – Melting Point

Additives – Thermal Conductivity

EMBRY-RIDDLE Aeronautical University

Additives – Thermal Shock Resistance

EMBRY-RIDDLE Aeronautical University

Additives – **Fracture Toughness**

Additives – Ductility Index

Additives – **Price**

Deployment System			Scores			Trades						
Criteria	Mandatory? (Y=1/ N=0)	Weight	Scale	Thermite Microcapsules*	Auger	Impeller	Extra Engine	Cannon	Magazine	Fluidization	COPVs *	lonization Fluidizatoin *
Modifications Required	1	15%	1-3	3	2	2	1	2	2	2	2	2
Plume Survivability (Temp, Press.)	1	20%	1-3	1.5	3	3	3	2	2.5	3	3	3
Danger to Vessel	1	10%	1-3	1.5	3	2.5	1	3	2.5	3	3	3
Transit/Weight	1	10%	1-3	3	2	1.5	1	3	2	2.5	2.5	2.5
TRL	0	10%	1-3	2	2	3	3	2	1	3	3	3
Testability	0	15%	1-3	2	1.5	3	1	3	1	3	3	3
Effectiveness	1	10%	1-3	2.5	1	3	1.5	1.75	1	3	3	3
Resource Consumption	1	10%	1-3	3	1.5	1.5	1.5	3	3	2.5	2.5	2
Weighted Total %		100%		75%	69%	83%	57%	81%	63%	92%	92%	90%
									*Cai	n <mark>be integrate</mark> d	with other of	deployment systems

Plume Add	litive		Scores		Trades					
Criteria	Mandatory? (Y=1/ N=0)	Weight	Scale	Ceramics	Thermoplastics	SiAlON Thermal Spray	Liquid Nitrogen	Lotus Leaf	Acids	
Safety/non-toxic	1	5%	1-3	3	3	3	3	3	2	
Plume Survivability (Temp, Press.)	1	20%	1-3	3	1.5	3	1	2	2	
Lunar Environment Survivability	1	20%	1-3	3	2	3	1	3	2	
Transit/Deployment	0	10%	1-3	3	3	2.75	1.5	3	1	
TRL	0	10%	1-3	2	2	1.25	3	3	1	
Testability	0	15%	1-3	2	2.5	2	3	3	1.5	
Effectiveness	0	10%	1-3	2.5	1.5	2	1.75	1.5	1.5	
Accessibility of Additive	0	10%	1-3	3	3	3	3	1	3	
Weighted Total %		100%		90%	73%	85%	64%	82%	59%	

PARSEC on Blue Moon Rendered on Landing Pad Simulation

PARSEC on Blue Moon Render

